当前位置:高中试题 > 数学试题 > 抛物线的定义与方程 > 抛物线y=ax2与直线y=kx+b(k≠0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有(    )A.x3=x1+...
题目
题型:不详难度:来源:
抛物线y=ax2与直线y=kx+b(k≠0)交于AB两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有(    )
A.x3=x1+x2B.x1x2=x1x3+x2x3
C.x1+x2+x3="0"D.x1x2+x2x3+x3x1=0

答案
B
解析
解方程组,得ax2kxb=0,可知x1+x2=,x1x2=-,x3=-,代入验证即可.
核心考点
试题【 抛物线y=ax2与直线y=kx+b(k≠0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有(    )A.x3=x1+】;主要考察你对抛物线的定义与方程等知识点的理解。[详细]
举一反三
若P1(x1,y1),P2(x2,y2)是抛物线y2=2px(p>0)上的两个不同的点,则是P1P2过抛物线焦点的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

题型:不详难度:| 查看答案
已知圆k过定点A(a,0)(a>0),圆心k在抛物线C: y2=2ax上运动,MN为圆ky轴上截得的弦.
(1)试问MN的长是否随圆心k的运动而变化?
(2)当|OA|是|OM|与|ON|的等差中项时,抛物线C的准线与圆k有怎样的位置关系?
题型:不详难度:| 查看答案
如图,以原点O为顶点,以y轴为对称轴的抛物线E的焦点为F(0,1),点M是直线l:y=m(m<0)上任意一点,过点M引抛物线E的两条切线分别交x轴于点S,T,切点分别为B,A.
(I)求抛物线E的方程;
(Ⅱ)求证:点S,T在以FM为直径的圆上;
(Ⅲ)当点M在直线l上移动时,直线AB恒过焦点F,求m的值.
题型:不详难度:| 查看答案
如图,三条直线abc两两平行,直线ab间的距离为p,直线bc间的距离为AB为直线a上两定点,且|AB|=2pMN是在直线b上滑动的长度为2p的线段。 

(1)建立适当的平面直角坐标系,求△AMN的外心C的轨迹E
(2)接上问,当△AMN的外心CE上什么位置时,d+|BC|最小,最小值是多少?(其中d是外心C到直线c的距离).
题型:不详难度:| 查看答案
直线l过抛物线y2=2px(p>0)的焦点且与抛物线有两个交点,对于抛物线上另外两点AB直线l能否平分线段AB?试证明你的结论.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.