当前位置:高中试题 > 数学试题 > 抛物线的定义与方程 > 设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是________....
题目
题型:不详难度:来源:
设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.
答案
[-1,1]
解析
易知抛物线y2=8x的准线x=-2与x轴的交点为Q(-2,0),于是,可设过点Q(-2,0)的直线l的方程为y=k(x+2)(由题可知k是存在的),联立k2x2+(4k2-8)x+4k2=0.其判别式为Δ=(4k2-8)2-16k4=-64k2+64≥0,可解得-1≤k≤1
核心考点
试题【设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.】;主要考察你对抛物线的定义与方程等知识点的理解。[详细]
举一反三
如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(xy1),B(x2,y2).

(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面积的最大值.
题型:不详难度:| 查看答案
已知抛物线y2=2px(p≠0)上存在关于直线x+y=1对称的相异两点,则实数p的取值范围为________.
题型:不详难度:| 查看答案
已知抛物线y2=2px(p≠0)及定点A(a,b),B(-a,0),ab≠0,b2≠2pa,M是抛物线上的点.设直线AM、BM与抛物线的另一个交点分别为M1、M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为________.
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).
(1)求抛物线C的标准方程;
(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为-4,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点.
题型:不详难度:| 查看答案
已知拋物线的顶点在原点,它的准线过双曲线=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,拋物线与双曲线交于点P,求拋物线方程和双曲线方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.