当前位置:高中试题 > 数学试题 > 抛物线的定义与方程 > 设的垂直平分线.(1)当且仅当?(2)当直线的斜率为2时,求轴上截距的取值范围.    ...
题目
题型:不详难度:来源:
的垂直平分线.
(1)当且仅当?
(2)当直线的斜率为2时,求轴上截距的取值范围.    
答案
(1)当且仅当;(2)
解析
(1)本题可转化为.从而确定,确定.
(2)设直线的方程为,所以可设直线AB的方程为,然后利用直线AB与抛物线有两个交点,得到m的取值范围,再根据AB的中点在直线l上,进而得到m与b的等式关系,进而确定b的取值范围.
解:(1)
依题意不同时为0
上述条件等价于

即当且仅当
(2)
过点
.
,则
,由
于是
核心考点
试题【设的垂直平分线.(1)当且仅当?(2)当直线的斜率为2时,求轴上截距的取值范围.    】;主要考察你对抛物线的定义与方程等知识点的理解。[详细]
举一反三
过抛物线的焦点作直线交抛物线于两点,若=                    
题型:不详难度:| 查看答案
(本题满分14分)已知:曲线上任意一点到点的距离与到直线的距离相等.
(1)求曲线的方程;
(2)如果直线交曲线两点,是否存在实数,使得以为直径的圆经过原点?若存在,求出的值;若不存在,说明理由.
题型:不详难度:| 查看答案
过抛物线焦点F的直线交抛物线于A、B两点,若A、B在抛物线准线上的射影分别为
,则(   )
A.   B.  C.   D.
题型:不详难度:| 查看答案
设抛物线的顶点在原点,准线方程为,则抛物线的方程是( )
A.B.C.D.

题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足,M点的轨迹为曲线C。
(1)求C的方程;
(2)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.