当前位置:高中试题 > 数学试题 > 抛物线的定义与方程 > 已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,,P为C的准线上一点,则的面积为( )A.18B.24C. 36D. 48...
题目
题型:不详难度:来源:
已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,,P为C的准线上一点,则的面积为( )
A.18B.24C. 36D. 48

答案
C
解析
不妨取抛物线C的方程为,得
.
核心考点
试题【已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,,P为C的准线上一点,则的面积为( )A.18B.24C. 36D. 48】;主要考察你对抛物线的定义与方程等知识点的理解。[详细]
举一反三
已知⊙O:为抛物线的焦点,为⊙O外一点,由作⊙O的切线与圆相切于点,且
(1)求点P的轨迹C的方程
(2)设A为抛物线准线上任意一点,由A向曲线C作两条切线AB、AC,其中B、C为切点.求证:直线BC必过定点
题型:不详难度:| 查看答案
若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P的轨迹为(  )
A.圆B.椭圆C.双曲线D.抛物线

题型:不详难度:| 查看答案
设F(1,0),M点在x轴上,P点在y轴上,且=2,当点P在y轴上运动时,点N的轨迹方程为(  )
A.y2=2xB.y2=4x
C.y2xD.y2x

题型:不详难度:| 查看答案
已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点.

(1)求点P的轨迹T的方程;
(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.

题型:不详难度:| 查看答案
设M、N为抛物线C:y=x2上的两个动点,过M、N分别作抛物线C的切线l1、l2,与x轴分别交于A、B两点,且l1与l2相交于点P,若|AB|=1.

(1)求点P的轨迹方程;
(2)求证:△MNP的面积为一个定值,并求出这个定值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.