当前位置:高中试题 > 数学试题 > 抛物线 > 抛物线的顶点在原点,焦点在射线x﹣y+1=0(x≥0)上(1)求抛物线的标准方程(2)过(1)中抛物线的焦点F作动弦AB,过A、B两点分别作抛物线的切线,设其交...
题目
题型:期末题难度:来源:
抛物线的顶点在原点,焦点在射线x﹣y+1=0(x≥0)上
(1)求抛物线的标准方程
(2)过(1)中抛物线的焦点F作动弦AB,过A、B两点分别作抛物线的切线,设其交点为M,求点M的轨迹方程,并求出的值.
答案
解:(1)∵是标准方程,
∴其焦点应该在坐标轴上,
∴令x=0,代入射线x﹣y+1=0,解得其焦点坐标为(0,1)
当焦点为(0,1)时,可知P=2,
∴其方程为x2=4y.
(2)设
过抛物线A,B两点的切线方程分别是
其交点坐标
设AB的直线方程y=kx+1代入x2=4y,得x2﹣4kx﹣4=0




核心考点
试题【抛物线的顶点在原点,焦点在射线x﹣y+1=0(x≥0)上(1)求抛物线的标准方程(2)过(1)中抛物线的焦点F作动弦AB,过A、B两点分别作抛物线的切线,设其交】;主要考察你对抛物线等知识点的理解。[详细]
举一反三
在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).
(Ⅰ)求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由
题型:期末题难度:| 查看答案
已知抛物线方程为y2=4x,过Q(2,0)作直线l.
①若l与x轴不垂直,交抛物线于A、B两点,是否存在x轴上一定点E(m,0),使得∠AEQ=∠BEQ?若存在,求出m的值;若不存在,请说明理由?
②若L与X轴垂直,抛物线的任一切线与y轴和L分别交于M、N两点,则自点M到以QN为直径的圆的切线长|MT|为定值,试证之.
题型:同步题难度:| 查看答案
如图,等边三角形OAB的边长为,且其三个顶点均在抛物线E:x2=2py(p>0)上。
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q,证明以PQ为直径的圆恒过y轴上某定点。
题型:高考真题难度:| 查看答案
已知函数f(x)=ax2+ax和g(x)=x﹣a,其中a∈R,且a≠0.
(I)若函数f(x)与g(x)图象相交于不同的两点A、B,O为坐标原点,试求△OAB的面积S的最大值;
(II)若p和q是方程f(x)﹣g(x)=0的两正根,且 ,证明:当x∈(0,P)时,f(x)<P﹣a.
题型:期末题难度:| 查看答案
在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A、B两点,其中点A在x轴上方.若直线l的倾斜角为60 °,则△OAF的面积为(    )。
题型:高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.