当前位置:高中试题 > 数学试题 > 椭圆的几何性质 > 已知椭圆中心为坐标原点O,对称轴为坐标轴,左焦点F1,右顶点和上顶点分别是A,B,P为椭圆上的点,当PF1⊥x轴,且PO∥AB时,椭圆的离心率为(  )A.12...
题目
题型:不详难度:来源:
已知椭圆中心为坐标原点O,对称轴为坐标轴,左焦点F1,右顶点和上顶点分别是A,B,P为椭圆上的点,当PF1⊥x轴,且POAB时,椭圆的离心率为(  )
A.
1
2
B.


2
2
C.


2
-1
D.


6
-


3
答案
设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)

可得F1(-c,0),c2=a2-b2,则P(-c,b


1-
c2
a2
),即P(-c,
b2
a
).
∵ABPO,∴kAB=kOP
即-
b
a
=-
b2
ac
,解得b=c.
两边平方,得b2=a2-c2=c2,解得a=


2
c

∴椭圆的离心率为e=
c
a
=


2
2

故选:B
核心考点
试题【已知椭圆中心为坐标原点O,对称轴为坐标轴,左焦点F1,右顶点和上顶点分别是A,B,P为椭圆上的点,当PF1⊥x轴,且PO∥AB时,椭圆的离心率为(  )A.12】;主要考察你对椭圆的几何性质等知识点的理解。[详细]
举一反三
点M是椭圆
x2
4
+
y2
3
=1上的一点,F1,F2分别为椭圆左右焦点,则满足|MF1|=3|MF2|的点M坐标为______.
题型:不详难度:| 查看答案
已知椭圆
x2
a2
+
y2
3
=1(a>0)
的一条准线方程是x=4,那么此椭圆的离心率是 ______.
题型:不详难度:| 查看答案
椭圆
x2
4
+y2=1
的焦点为F1,F2,点P在椭圆上,且线段PF1的中点恰好在y轴上,|PF1|=λ|PF2|,则λ=______.
题型:不详难度:| 查看答案
椭圆
x2
25
+
y2
9
=1
上的一点p到两焦点距离之积为m,则m最大时,P点坐标是(  )
A.(5,0)和(-5,0)B.(0,3)和(0,-3)
C.(
5
2
3


3
2
)
(
5
2
,-
3


3
2
)
D.(
5


3
2
3
2
)
(-
5


3
2
3
2
)
题型:不详难度:| 查看答案
椭圆的短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.