当前位置:高中试题 > 数学试题 > 椭圆的几何性质 > 已知F1、F2是椭圆x24+y23=1的左右焦点,若直线l过焦点F1,且与椭圆交于A、B,则△ABF2的周长为______....
题目
题型:不详难度:来源:
已知F1、F2是椭圆
x2
4
+
y2
3
=1
的左右焦点,若直线l过焦点F1,且与椭圆交于A、B,则△ABF2的周长为______.
答案
∵F1、F2是椭圆
x2
4
+
y2
3
=1
的左右焦点,
直线l过焦点F1,且与椭圆交于A、B,
∴由椭圆的定义知:
△ABF2的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4+4=8.
故答案为:8.
核心考点
试题【已知F1、F2是椭圆x24+y23=1的左右焦点,若直线l过焦点F1,且与椭圆交于A、B,则△ABF2的周长为______.】;主要考察你对椭圆的几何性质等知识点的理解。[详细]
举一反三
已知F1、F2是椭圆C:
x2
4
+
y2
3
=1
的焦点,点P是C上的动点,则PF1的取值范围为______.
题型:不详难度:| 查看答案
已知椭圆x2+
1
2
y2=a2
(a>0)与A(2,1),B(4,3)为端点的线段没有公共点,则a的取值范围是(  )
A.0<a<
3


2
2
B.0<a<
3


2
2
a>


82
2
C.a<
3


2
2
a>


82
2
D.
3


2
2
<a<


82
2
题型:不详难度:| 查看答案
若椭圆
x2
5
+
y2
m
=1
的离心率e=


10
5
,则m值(  )
A.3B.3或
25
3
C.


15
D.


15
 或
5


15
3
题型:不详难度:| 查看答案
抛物线的顶点和椭圆
x2
25
+
y2
9
=1
的中心重合,抛物线的焦点和椭圆 的右焦点重合,则抛物线的方程为(  )
A.y2=16xB.y2=8xC.y2=12xD.y2=6x
题型:不详难度:| 查看答案
已知椭圆a2x2-(
a
2
)y2=1的焦距为4,则a的值为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.