当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > (本小题满分15分)如图,已知椭圆=1(2≤m≤5),过其左焦点且斜率为1的直线与椭圆及直线的交点从左到右的顺序为A、B、C、D,设.(Ⅰ)求的解析式;(Ⅱ)求...
题目
题型:不详难度:来源:
(本小题满分15分)
如图,已知椭圆=1(2≤m≤5),过其左焦点且斜率为1的直线与椭圆及直线的交点从左到右的顺序为ABCD,设
(Ⅰ)求的解析式;
(Ⅱ)求的最值.
答案
(Ⅰ)f(m)=m∈[2,5]
(Ⅱ)f(m)的最大值为,此时m=2;f(m)的最小值为,此时m=5
解析
解 (Ⅰ)设椭圆的半长轴、半短轴及半焦距依次为abc,则a2=m,b2=m-1,c2=a2b2=1
∴椭圆的焦点为F1(-1,0),F2(1,0) 
故直线的方程为y=x+1,又椭圆的准线方程为x,即xm 
A(-m,-m+1),D(m,m+1)
考虑方程组,消去y得 (m-1)x2+m(x+1)2=m(m-1)
整理得 (2m-1)x2+2mx+2mm2=0
Δ=4m2-4(2m-1)(2mm2)=8m(m-1)2
∵2≤m≤5,∴Δ>0恒成立,xB+xC= 
又∵ABCD都在直线y=x+1上
∴|AB|=|xBxA|==(xBxA,|CD|=(xDxC)
∴||AB|-|CD||=|xBxA+xDxC|=|(xB+xC)-(xA+xD)|
又∵xA=-m,xD=m,∴xA+xD=0
∴||AB|-|CD||=|xB+xC=|= (2≤m≤5)
f(m)=m∈[2,5] 
(Ⅱ)由f(m)=,可知f(m)= 
又2-≤2-≤2-,∴f(m)∈[
f(m)的最大值为,此时m=2;f(m)的最小值为,此时m=5 
核心考点
试题【(本小题满分15分)如图,已知椭圆=1(2≤m≤5),过其左焦点且斜率为1的直线与椭圆及直线的交点从左到右的顺序为A、B、C、D,设.(Ⅰ)求的解析式;(Ⅱ)求】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
(本小题满分15分)已知椭圆经过点(0,1),离心率
(I)求椭圆C的方程;
(II)设直线与椭圆C交于A,B两点,点A关于x轴的对称点为A’.试问:当m变化时直线与x轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由。
题型:不详难度:| 查看答案
 分别是椭圆的左、右焦点,过的直线相交于两点,且成等差数列,则的长为      
题型:不详难度:| 查看答案
(12分)已知椭圆C:,两个焦点分别为,斜率为k的直线过右焦点且与椭圆交于A、B两点,设与y轴交点为P,线段的中点恰为B。
(1)若,求椭圆C的离心率的取值范围。
(2)若,A、B到右准线距离之和为,求椭圆C的方程。
题型:不详难度:| 查看答案
(14分)设F1F2分别为椭圆C =1(ab>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若MN是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PMPN的斜率都存在,并记为kPMkPN时,那么kPMkPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.
题型:不详难度:| 查看答案
P是以为焦点的椭圆上的一点,且,则此椭圆的离心率为(   )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.