当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 已知椭圆中心在原点,焦点在轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为(1)求椭圆的标准方程;(2)为椭圆左顶点,为椭圆上异于的任意两点,若,求证:直线过定...
题目
题型:不详难度:来源:
已知椭圆中心在原点,焦点在轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为
(1)求椭圆的标准方程;
(2)为椭圆左顶点,为椭圆上异于的任意两点,若,求证:直线过定点并求出定点坐标。
答案
(1)
(2)设,代入椭圆方程得
,所以

所以


化简得:(舍去)
所以,即过定点
解析

核心考点
试题【已知椭圆中心在原点,焦点在轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为(1)求椭圆的标准方程;(2)为椭圆左顶点,为椭圆上异于的任意两点,若,求证:直线过定】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知是椭圆上的三个动点,若右焦点的重心,则的值是
A.9B.7C.5D.3

题型:不详难度:| 查看答案
如图,在直角坐标系中有一直角梯形的中点为,以为焦点的椭圆经过点.
(1)求椭圆的标准方程;
(2)若点,问是否存在直线与椭圆交于两点且,若存在,求出直线的斜率的取值范围;若不存在,请说明理由.

题型:不详难度:| 查看答案
椭圆的焦距等于
A.1 B.2C.D.4

题型:不详难度:| 查看答案
分别是椭圆的左右焦点,过左焦点作直线与椭圆交于不同的两点
(Ⅰ)若,求的长;
(Ⅱ)在轴上是否存在一点,使得为常数?若存在,求出点的坐标;若不存在,说明理由
题型:不详难度:| 查看答案
设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足,则椭圆的离心率的取值范围是(   )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.