当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > .(本小题满分13分)P为椭圆上任意一点,为左、右焦点,如图所示.(1)若的中点为,求证:(2)若∠,求|PF1|·|PF2|之值;(3)椭圆上是否存在点P,使...
题目
题型:不详难度:来源:
.(本小题满分13分)
P为椭圆上任意一点,为左、右焦点,如图所示.
(1)若的中点为,求证:
(2)若∠,求|PF1|·|PF2|之值;
(3)椭圆上是否存在点P,使·=0,若存在,求出P点的坐标,若不存在,试说明理由

答案

(1)证明:在△F1PF2中,MO为中位线,
∴|MO|===a-=5-|PF1|.
(2)解:∵ |PF1|+|PF2|=10,
∴|PF1|2+|PF2|2=100-2|PF1|·|PF2|,

解析

核心考点
试题【.(本小题满分13分)P为椭圆上任意一点,为左、右焦点,如图所示.(1)若的中点为,求证:(2)若∠,求|PF1|·|PF2|之值;(3)椭圆上是否存在点P,使】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
(本题满分12分) 设椭圆 C1)的一个顶点与抛物线 C2 的焦点重合,F1,F2 分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 F2 的直线  与椭圆 C 交于 M,N 两点.
(I)求椭圆C的方程;
(II)是否存在直线 ,使得 ,若存在,求出直线  的方程;若不存在,说明理由;
(III)若 AB 是椭圆 C 经过原点 O 的弦,MN//AB,求证: 为定值.
题型:不详难度:| 查看答案
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点P(4,0)且不垂直于x轴直线与椭圆C相交于A、B两点。
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点在于x轴的对称点是E,证明:直线AE与x轴相交于定点。
题型:不详难度:| 查看答案
(本小题满分14分)
设椭圆C的左、右焦点分别为F1F2A是椭圆C上的一点,,坐标原点O到直线AF1的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设Q是椭圆C上的一点,过点Q的直线l x轴于点,交 y轴于点M,若,求直线l 的斜率.
题型:不详难度:| 查看答案
(本小题10分)
分别为椭圆的左、右两个焦点.(1)若椭圆上的点两点的距离之和等于4,求椭圆的方程和焦点坐标;(2)设点P是(1)中所得椭圆上的动点,
题型:不详难度:| 查看答案
(本小题满分14分)
已知椭圆C:=1的左.右焦点为,离心率为,直线与x轴、y轴分别交于点是直线与椭圆C的一个公共点,是点关于直线的对称点,设
(Ⅰ)证明:; (Ⅱ)确定的值,使得是等腰三角形.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.