当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.(I)求椭圆C的方程;(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上...
题目
题型:不详难度:来源:
已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆C的方程;
(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB为等边三角形,求k的值.
答案
(I); (II)  或
解析

试题分析:(I)由图形的对称性及椭圆的几何性质,易得,进而写出方程; (II) 先找到AB中垂线与l的交点,保证ΔPAB为等腰三角形,再满足即可保证ΔPAB为等边三角形,此外,注意对于特殊情形的讨论.
试题解析:
(I)因为椭圆的四个顶点恰好是一边长为2,
一内角为的菱形的四个顶点,
所以,椭圆的方程为.               4分
(II)设
当直线的斜率为时,的垂直平分线就是轴,
轴与直线的交点为,
又因为,所以
所以是等边三角形,所以满足条件;           6分
当直线的斜率存在且不为时,设的方程为
所以,化简得
所以 ,则      8分
的垂直平分线为,它与直线的交点记为
所以,解得,
                                        10分
因为为等边三角形, 所以应有
代入得到,解得(舍),     13分
综上可知, 或                               14分 
核心考点
试题【已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.(I)求椭圆C的方程;(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.
(I)求椭圆的方程;
(II)若点的坐标为,不过原点的直线与椭圆相交于两点,设线段的中点为,点到直线的距离为,且三点共线.求的最大值.
题型:不详难度:| 查看答案
已知双曲线的离心率为,顶点与椭圆的焦点相同,那么双曲线的焦点坐标为_____;渐近线方程为_________.
题型:不详难度:| 查看答案
已知椭圆的离心率为为椭圆的两个焦点,点在椭圆上,且的周长为
(Ⅰ)求椭圆的方程
(Ⅱ)设直线与椭圆相交于两点,若为坐标原点),求证:直线与圆相切.
题型:不详难度:| 查看答案
如图,已知椭圆C: 的左、右焦点分别为,离心率为,点A是椭圆上任一点,的周长为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点任作一动直线l交椭圆C于两点,记,若在线段上取一点R,使得,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.

题型:不详难度:| 查看答案
给定椭圆 ,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,且其短轴上的一个端点到的距离为.
(Ⅰ)求椭圆的方程和其“准圆”方程;
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直,并说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.