当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 已知椭圆的离心率为,且经过点.(Ⅰ)求椭圆的方程;(Ⅱ)如果过点的直线与椭圆交于两点(点与点不重合),①求的值;②当为等腰直角三角形时,求直线的方程....
题目
题型:不详难度:来源:
已知椭圆的离心率为,且经过点
(Ⅰ)求椭圆的方程;
(Ⅱ)如果过点的直线与椭圆交于两点(点与点不重合),
①求的值;
②当为等腰直角三角形时,求直线的方程.
答案
(Ⅰ)椭圆的方程为;(Ⅱ) ①;②直线的方程为
解析

试题分析:(Ⅰ)由与离心率为,可求出方程;(Ⅱ) ①要求的值,可设直线的方程,采用设而不求的方法求得;②由①知:,如果为等腰直角三角形,设的中点为,则,利用可求出的值,从而求出直线的方程为.
试题解析:(Ⅰ)因为椭圆经过点,因为,解得
所以椭圆的方程为
(Ⅱ)①若过点的直线的斜率不存在,此时两点中有一个点与点重合,不满足题目条件.
所以直线的斜率存在,设其斜率为,则的方程为,把代入椭圆方程得,设,则
因为,所以

②由①知:,如果为等腰直角三角形,设的中点为,则,且
,则,显然满足,此时直线的方程为
,则,解得,所以直线的方程为,即
综上所述:直线的方程为
核心考点
试题【已知椭圆的离心率为,且经过点.(Ⅰ)求椭圆的方程;(Ⅱ)如果过点的直线与椭圆交于两点(点与点不重合),①求的值;②当为等腰直角三角形时,求直线的方程.】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知分别是椭圆的左、右顶点,点在椭圆上,且直线与直线的斜率之积为
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,已知是椭圆上不同于顶点的两点,直线交于点,直线交于点.① 求证:;② 若弦过椭圆的右焦点,求直线的方程.

题型:不详难度:| 查看答案
已知椭圆,为其右焦点,离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点,问是否存在直线,使与椭圆交于两点,且.若存在,求出的取值范围;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知分别是椭圆: 的左、右焦点,点在直线上,线段的垂直平分线经过点.直线与椭圆交于不同的两点,且椭圆上存在点,使,其中是坐标原点,是实数.
(Ⅰ)求的取值范围;
(Ⅱ)当取何值时,的面积最大?最大面积等于多少?
题型:不详难度:| 查看答案
已知椭圆C:的离心率等于,点P在椭圆上。
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线,使得的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.
题型:不详难度:| 查看答案
如图,等腰梯形中,. 以为焦点,且过点的双曲线的离心率为;以为焦点,且过点的椭圆的离心率为,则的取值范围为(    )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.