当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 已知双曲线-=1(a>0,b>0)和椭圆+=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为    ....
题目
题型:不详难度:来源:
已知双曲线-=1(a>0,b>0)和椭圆+=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为    .
答案
-=1
解析
椭圆+=1的焦点坐标为F1(-,0),F2(,0),离心率为e=.
由于双曲线-=1与椭圆+=1有相同的焦点,
因此a2+b2=7.
又双曲线的离心率e==,
所以=,
所以a=2,b2=c2-a2=3,
故双曲线的方程为-=1.
核心考点
试题【已知双曲线-=1(a>0,b>0)和椭圆+=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为    .】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
题型:不详难度:| 查看答案
设椭圆C1:+=1(a>b>0),抛物线C2:x2+by=b2.

(1)若C2经过C1的两个焦点,求C1的离心率;
(2)设A(0,b),Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△AMN的垂心为B(0,b),且△QMN的重心在C2上,求椭圆C1和抛物线C2的方程.
题型:不详难度:| 查看答案
如图,已知抛物线C1:x2+by=b2经过椭圆C2:+=1(a>b>0)的两个焦点.

(1)求椭圆C2的离心率;
(2)设点Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.
题型:不详难度:| 查看答案
已知椭圆C1:+=1(a>b>0)的右顶点为A(1,0),过C1的焦点且垂直长轴的弦长为1.

(1)求椭圆C1的方程;
(2)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.
题型:不详难度:| 查看答案
如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A、A′两点,=4.

(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.