当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 椭圆=1(a>b>0)的右焦点F,其右准线与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是________...
题目
题型:不详难度:来源:
椭圆=1(a>b>0)的右焦点F,其右准线与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是________.

答案
≤e<1.
解析
解法1)由题意,椭圆上存在点P,使得线段AP的垂直平分线过点F,所以|PF|=|FA|,而|FA|=-c,|PF|≤a+c,所以-c≤a+c,即a2≤ac+2c2.又e=,所以2e2+e≥1,所以2e2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以≤e<1.
(解法2)设点P(x,y).由题意,椭圆上存在点P,使得线段AP的垂直平分线过点F,所以|PF|=|FA|,由椭圆第二定义,=e,所以|PF|=e-ex=a-ex,而|FA|=-c,所以a-ex=-c,解得x=(a+c-).由于-a≤x≤a,
所以-a≤(a+c-)≤a.又e=,所以2e2+e-1≥0,即(2e-1)(e+1)≥0.
又0<e<1,所以≤e<1.
核心考点
试题【椭圆=1(a>b>0)的右焦点F,其右准线与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是________】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
设F1、F2分别是椭圆=1(a>b>0)的左、右焦点,若在直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是________.
题型:不详难度:| 查看答案
若椭圆=1的焦距为2,求椭圆上的一点到两个焦点的距离之和.
题型:不详难度:| 查看答案
椭圆=1的焦点为F1、F2,点P为椭圆上的动点,当∠F1PF2为钝角时,求点P的横坐标x0的取值范围.
题型:不详难度:| 查看答案
椭圆=1的离心率为,则k的值为________.
题型:不详难度:| 查看答案
已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足PF1=2PF2,∠PF1F2=30°,则椭圆的离心率为________.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.