当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 已知椭圆C:=1(a>b>0)的离心率为,F为椭圆的右焦点,M、N两点在椭圆C上,且=λ(λ>0),定点A(-4,0).(1)求证:当λ=1时,⊥;(2)若当λ...
题目
题型:不详难度:来源:
已知椭圆C:=1(a>b>0)的离心率为,F为椭圆的右焦点,M、N两点在椭圆C上,且=λ(λ>0),定点A(-4,0).
(1)求证:当λ=1时,
(2)若当λ=1时,有·,求椭圆C的方程..
答案
(1)见解析(2)=1
解析
(1)证明:设M(x1,y1),N(x2,y2),F(c,0),则=(c-x1,-y1),=(x2-c,y2).当λ=1时,,∴-y1=y2,x1+x2=2c.∵M、N两点在椭圆C上,∴=a2=a2,∴.若x1=-x2,则x1+x2=0≠2c(舍去),∴x1=x2,∴=(0,2y2),=(c+4,0),∴·=0,∴.
(2)解:当λ=1时,由(1)知x1=x2=c,
∴M,N,∴
·=(c+4)2.(*)
,∴a2c2,b2,代入(*)式得c2+8c+16=,∴c=2或c=-(舍去).∴a2=6,b2=2,∴椭圆C的方程为=1
核心考点
试题【已知椭圆C:=1(a>b>0)的离心率为,F为椭圆的右焦点,M、N两点在椭圆C上,且=λ(λ>0),定点A(-4,0).(1)求证:当λ=1时,⊥;(2)若当λ】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.

(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2).设M、N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.
题型:不详难度:| 查看答案
已知F1、F2分别是椭圆=1(a>b>0)的左、右焦点,A、B分别是此椭圆的右顶点和上顶点,P是椭圆上一点,O是坐标原点,OP∥AB,PF1⊥x轴,F1A=,则此椭圆的方程是________________.
题型:不详难度:| 查看答案
如图,已知椭圆=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是________.

题型:不详难度:| 查看答案
若点O和点F分别为椭圆=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为________.
题型:不详难度:| 查看答案
如图,已知椭圆=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若=2·,求椭圆的方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.