当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 在平面直角坐标系中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1:,C2:. 设点P的轨迹为.(1)求C的方程;(2)设直线与C交于A,B两点.问k为何...
题目
题型:不详难度:来源:
在平面直角坐标系中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1,C2. 设点P的轨迹为
(1)求C的方程;
(2)设直线与C交于A,B两点.问k为何值时?此时的值是多少?
答案
(1)   (2)
解析

试题分析:
(1) 通过配方把圆和圆的普通方程化为标准方程,得到圆心的坐标,根据椭圆的定义可以判断C点轨迹为椭圆,其中两个圆的圆心为焦点可得且椭圆的焦点在y轴上,根据题意,李永刚之间的关系即可求出的值,进而得到C的方程.
(2)联立直线与椭圆的方程消元得到二次方程,二次方程的根AB两点的横坐标,利用二次方程根与系数的关系得到AB两点横坐标之间的关系,利用得到AB横纵坐标之间的关系即可求出k的值,再利用椭圆的弦长公式即可求出的长度.
试题解析:
(1)由已知得两圆的圆心坐标分别为.      (1分)
设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴长为2的椭圆.                                                      (2分)
它的短半轴长,                              (3分)
故曲线C的方程为.                                   (4分)
(2)设,其坐标满足 
消去y并整理得,                         (5分)
 ,∴
.                          (6分)
              (7分)
于是.       (8分)
,得.                                   (9分)
因为
所以当时,有,即.                (10分)
时,.                   (11分)
,           (12分)
,        (13分)
所以.                                          (14分)
核心考点
试题【在平面直角坐标系中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1:,C2:. 设点P的轨迹为.(1)求C的方程;(2)设直线与C交于A,B两点.问k为何】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
椭圆以双曲线的实轴为短轴、虚轴为长轴,且与抛物线交于两点.
(1)求椭圆的方程及线段的长;
(2)在图像的公共区域内,是否存在一点,使得的弦的弦相互垂直平分于点?若存在,求点坐标,若不存在,说明理由.
题型:不详难度:| 查看答案
已知动点在椭圆上,为椭圆的右焦点,若点满足,则的最小值为(  )
A.B.C.D.

题型:不详难度:| 查看答案
给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.
(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程,
并证明
(ⅱ)求证:线段的长为定值.
题型:不详难度:| 查看答案
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点
(1)求椭圆的方程;
(2)直线与椭圆相交于两点, 为原点,在上分别存在异于点的点,使得在以为直径的圆外,求直线斜率的取值范围.
题型:不详难度:| 查看答案
如图,已知点是离心率为的椭圆上的一点,斜率为的直线交椭圆两点,且三点互不重合.

(1)求椭圆的方程;(2)求证:直线的斜率之和为定值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.