当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 在平面直角坐标系中,已知点和,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.(1)当点在圆上运动时,求点的轨迹方程;(2)...
题目
题型:不详难度:来源:
在平面直角坐标系中,已知点,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.
(1)当点在圆上运动时,求点的轨迹方程
(2)已知是曲线上的两点,若曲线上存在点,满足为坐标原点),求实数的取值范围.
答案
(1);(2).
解析

试题分析:(1)由题意知知|QF|=|QP|,所以|QE|+|QF|=|QE|+|QP|=|EP|=>|EF|=2,由椭圆定义法知,Q点的轨迹是以E,F为焦点实轴长的椭圆,求出,写出点Q的轨迹方程;(2)设出M、N点坐标和直线MN方程,代入曲线T的方程,整理成关于x的二次方程,利用根与系数关系将用参数表示出来,利用判别式大于0列出关于参数的不等式,再利用题中的向量条件用参数把P点坐标表示出来,代入曲线T的方程,得出关于参数的等式,代入判别式得到关于的不等式,求出的范围.
试题解析:(1)点在线段的垂直平分线上,则,又
,故可得点的轨迹方程.
(2)令经过点的直线为,则的斜率存在,设直线的方程为
将其代入椭圆方程整理可得
,则,故
(1)当时,点关于原点对称,则
(2)当时,点不关于原点对称,则
,得,故
,因为在椭圆上,故
化简,得,又,故得     ①
,得       ②
联立①②两式及,得,故
综上(1)(2)两种情况,得实数的取值范围是.
核心考点
试题【在平面直角坐标系中,已知点和,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点.(1)当点在圆上运动时,求点的轨迹方程;(2)】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
如图,椭圆经过点,其左、右顶点分别是,左、右焦点分别是(异于)是椭圆上的动点,连接交直线两点,若成等比数列.

(1)求此椭圆的离心率;
(2)求证:以线段为直径的圆过点.
题型:不详难度:| 查看答案
已知离心率为的双曲线和离心率为的椭圆有相同的焦点是两曲线的一个公共点,若,则等于(     )
A.B.C.D.

题型:不详难度:| 查看答案
已知椭圆的方程为,其中.
(1)求椭圆形状最圆时的方程;
(2)若椭圆最圆时任意两条互相垂直的切线相交于点,证明:点在一个定圆上.
题型:不详难度:| 查看答案
如图,已知点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切于点.

(1)求的值及椭圆的标准方程;
(2)设动点满足,其中M、N是椭圆上的点,为原点,直线OM与ON的斜率之积为,求证:为定值.
题型:不详难度:| 查看答案
如图所示,已知ABC是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且,|BC|=2|AC|.

(1)求椭圆E的方程;
(2)在椭圆E上是否存点Q,使得?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由.
(3)过椭圆E上异于其顶点的任一点P,作的两条切线,切点分别为M、N,若直线MN在x轴、y轴上的截距分别为m、n,证明:为定值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.