当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 巳知椭圆的离心率是.⑴若点P(2,1)在椭圆上,求椭圆的方程;⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围....
题目
题型:不详难度:来源:
巳知椭圆的离心率是.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.
答案
;⑵椭圆的焦距的取值范围是.
解析

试题分析:⑴,再将点的坐标代入椭圆的方程,这样便有三个方程,三者联立,即可求出,从而得椭圆的方程.⑵显然斜率不存在或斜率等于0时,不可能满足题意.故可设直线l的方程为:,这样可将点C(2, 0)关于直线l的对称点的坐标用表示出来,然后代入椭圆的方程,从而得一关于的方程:.设,因此原问题转化为关于t的方程有正根.根据二次方程根的分布可得.进而求得椭圆的焦距的取值范围.

试题解析:⑴,
∵点P(2,1)在椭圆上,∴     5分
⑵依题意,直线l的斜率存在且不为0,则直线l的方程为:.
设点C(2, 0)关于直线l的对称点为,则

若点在椭圆上,则

,因此原问题转化为关于t的方程有正根.
①当时,方程一定有正根;
②当时,则有
∴综上得.
又椭圆的焦距为.
故椭圆的焦距的取值范围是(0,4]         13分
核心考点
试题【巳知椭圆的离心率是.⑴若点P(2,1)在椭圆上,求椭圆的方程;⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
过椭圆的一个焦点作垂直于实轴的弦是另一焦点,若∠,则椭圆的离心率等于(    )
A.B.C.D.

题型:不详难度:| 查看答案
设椭圆C1的右焦点为F,P为椭圆上的一个动点.
(1)求线段PF的中点M的轨迹C2的方程;
(2)过点F的直线l与椭圆C1相交于点A、D,与曲线C2顺次相交于点B、C,当时,求直线l的方程.
题型:不详难度:| 查看答案
已知椭圆的方程C:),若椭圆的离心率,则的取值范围是.
题型:不详难度:| 查看答案
分别是椭圆的左、右焦点,点在椭圆上,线段的中点在轴上,若,则椭圆的离心率为(   )
A.B.C.D.

题型:不详难度:| 查看答案
如图,点是椭圆的一个顶点,的长轴是圆的直径,是过点且互相垂直的两条直线,其中交圆两点,交椭圆于另一点.

(1)求椭圆的方程;
(2)求面积的最大值及取得最大值时直线的方程.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.