当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆E:(a>b>0)的右焦点为F(c,0),离心率为,A(﹣a,0),B(0,b),且△ABF的面积为,设斜率为k的直线过点F,且与椭圆E相交于M、N两点...
题目
题型:江西省同步题难度:来源:
已知椭圆E:(a>b>0)的右焦点为F(c,0),离心率为,A(﹣a,0),
B(0,b),且△ABF的面积为,设斜率为k的直线过点F,且与椭圆E相交于M、N两点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若 ·,求k的取值范围.
答案
解:(Ⅰ)∵离心率为
∴a=2c,b=c.
  ∵△ABF的面积为

∴c=1
∴a=2,

∴椭圆E的方程为
(Ⅱ)斜率为k的直线过点F,
设方程为y=k(x﹣1)与联立,
消元可得(3+4k2)x2﹣8k2x+4k2﹣12=0
设M(),N(x2,y2),
+x2=
y2=k2﹣1)(x2﹣1)=

=x2+2(+x2)+4+y2=




∴k的取值范围是
核心考点
试题【已知椭圆E:(a>b>0)的右焦点为F(c,0),离心率为,A(﹣a,0),B(0,b),且△ABF的面积为,设斜率为k的直线过点F,且与椭圆E相交于M、N两点】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知抛物线C1:y2=2px(p>0)的焦点F以及椭圆C2的上、下焦点及左、右顶点均在圆O:x2+y2=1上.
(1)求抛物线C1和椭圆C2的标准方程;
(2)过点F的直线交抛物线C1于A、B两不同点,交y轴于点N,已知,求证:λ12为定值.
(3)直线l交椭圆C2于P、Q两不同点,P、Q在x轴的射影分别为P"、Q",,若点S满足:,证明:点S在椭圆C2上.
题型:河南省月考题难度:| 查看答案
设椭圆C1的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2﹣1与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值.
题型:山西省月考题难度:| 查看答案
设椭圆C1的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2﹣1与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值.
题型:山西省月考题难度:| 查看答案
已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若,求证:λ12为定值.
题型:云南省月考题难度:| 查看答案
已知中心在原点,焦点在x轴上的椭圆,离心率,且经过抛物线x2=4y的焦点.
(1)求椭圆的标准方程;
(2)若过点B(0,﹣2)的直线l(斜率不等于零)与椭圆交于不同的两点E,F(E在B,F之间),△OBE与△OBF面积之比为λ,求λ的取值范围.
题型:新疆维吾尔自治区期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.