当前位置:高中试题 > 数学试题 > 椭圆 > 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+6=0相切.(Ⅰ)求椭圆的方程;(Ⅱ)设P(4...
题目
题型:济宁一模难度:来源:
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+


6
=0
相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于点Q(1,0).
答案
(Ⅰ)∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,∴
a2-b2
a2
=
1
4

a2=
4
3
b2

∵椭圆的短半轴为半径的圆与直线x-y+


6
=0
相切.
∴b=


3

∴a2=4,b2=3
∴椭圆的方程为
x2
4
+
y2
3
=1

(Ⅱ)由题意知直线PB的斜率存在,设方程为y=k(x-4)代入椭圆方程可得(4k2+3)x2-32k2x+64k2-12=0
设B(x1,y1),E(x2,y2),则A(x1,-y1),
∴x1+x2=
32k2
4k2+3
,x1x2=
64k2-12
4k2+3

又直线AE的方程为y-y2=
y2+y1
x2-x1
(x-x2)

令y=0,则x=x2-
y2(x2-x1)
y2+y1
=
2x1x2-4(x1+x2)
x1+x2
=
64k2-12
4k2+3
-4×
32k2
4k2+3
32k2
4k2+3
=1
∴直线AE过x轴上一定点Q(1,0).
核心考点
试题【已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+6=0相切.(Ⅰ)求椭圆的方程;(Ⅱ)设P(4】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,F1,F2分别为左,右焦点,离心率为
1
2
,点A在椭圆C上,|


AF1
|=2
|


AF2
题型:


F1A
|=-2


AF2


F1A
,过F2与坐标轴不垂直的直线l交椭圆于P,Q两点.
(1)求椭圆C的方程;
(2)在线段OF2上是否存在点M(m,0),使得以线段MP,MQ为邻边的四边形是菱形?若存在,求出实数m的取值范围;若不存在,说明理由.难度:| 查看答案
如图,焦距为2的椭圆E的两个顶点分别为A和B,且


AB


n
=(


2
,-1)
共线.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线y=kx+m与椭圆E有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.魔方格
题型:河南模拟难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,直线l过点A(4,0),B(0,2),且与椭圆C相切于点P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点A(4,0)的直线m与椭圆C相交于不同的两点M、N,使得36|AP|2=35|AM|•|AN|?若存在,试求出直线m的方程;若不存在,请说明理由.
题型:浙江模拟难度:| 查看答案
已知直线y=-x+m与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
相交于A、B两点,若椭圆的离心率为


3
3
,焦距为2.
(Ⅰ)求椭圆方程;
(Ⅱ)若向量


OA


OB
=0(其中0为坐标原点),求m的值.魔方格
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上的任意一点到它的两个焦点F1(-c,0),F2(c,0)(c>0)的距离之和为2


2
,且其焦距为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线x-y+m=0与椭圆C交于不同的两点A,B.问是否存在以A,B为直径的圆过椭圆的右焦点F2.若存在,求出m的值;不存在,说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.