当前位置:高中试题 > 数学试题 > 椭圆 > 已知点A、B分别是椭圆x2a2+y2b2=1(a>b>0)长轴的左、右端点,点C是椭圆短轴的一个端点,且离心率e=22,S△ABC=2.动直线,l:y=kx+m...
题目
题型:不详难度:来源:
已知点A、B分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)长轴的左、右端点,点C是椭圆短轴的一个端点,且离心率e=


2
2
,S△ABC=


2
.动直线,l:y=kx+m与椭圆于M、N两点.
(I)求椭圆的方程;
(II)若椭圆上存在点P,满足


OM
+


ON


OP
(O为坐标原点),求λ的取值范围;
(III)在(II)的条件下,当λ取何值时,△MNO的面积最大,并求出这个最大值.
答案
(I)由题意,







a2+b2
a
=


2
2
1
2
×2a×b=


2
,∴a=


2
,b=1

∴椭圆的方程为
x2
2
+y2=1

(II)y=kx+m代入椭圆方程整理可得(1+2k2)x2+4kmx+2m2-2=0.
设点M、N的坐标分别为M(x1,y1)、N(x2,y2)、P(x0,y0),则
x1+x2=-
4km
1+2k2
,x1x2=
2m2-2
1+2k2

∴y1+y2=k(x1+x2)+2m=
2m
1+2k2

(1)当m=0时,点M、N关于原点对称,则λ=0.
(2)当m≠0时,点M、N不关于原点对称,则λ≠0,


OM
+


ON


OP
,∴(x1,y1)+(x2,y2)=λ(x0,y0),
∴x1+x2=λx0,y1+y2=λy0
∴x0=-
4km
λ(1+2k2)
,y0=
2m
λ(1+2k2)

∵P在椭圆上,
[
4km
λ(1+2k2)
]2+2[
2m
λ(1+2k2)
]2=2

化简,得4m2(1+2k2)=λ2(1+2k22
∵1+2k2≠0,
∴有4m22(1+2k2).…①
又∵△=16k2m2-4(1+2k2)(2m2-2)=8(1+2k2-m2),
∴由△>0,得1+2k2>m2.…②
将①、②两式,∵m≠0,∴λ2<4,
∴-2<λ<2且λ≠0.
综合(1)、(2)两种情况,得实数λ的取值范围是-2<λ<2;
(III)由题意,|MN|=


1+k2
|x1-x2|
,点O到直线MN的距离d=
|m|


1+k2

∴S△MNO=
1
2
|MN|d
=
1
2
|m||x1-x2|
=


2
|m|


1+2k2-m2
1+2k2

由①得1+2k2=
4m2
λ2
,代入上式并化简可得S△MNO=


2
4


λ2(4-λ2)



λ2(4-λ2)
λ2+(4-λ2)
2
=2
∴S△MNO


2
2

当且仅当λ2=4-λ2,即λ=±


2
时,等号成立
∴当λ=±


2
时,△MNO的面积最大,最大值为


2
2
核心考点
试题【已知点A、B分别是椭圆x2a2+y2b2=1(a>b>0)长轴的左、右端点,点C是椭圆短轴的一个端点,且离心率e=22,S△ABC=2.动直线,l:y=kx+m】;主要考察你对椭圆等知识点的理解。[详细]
举一反三
已知椭圆C的中心在原点,焦点在x轴上,离心率为
1
2
,短轴长为4


3

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)P(2,3),Q(2.-3)是椭圆C上两个定点,A、B是椭圆C上位于直线PQ两侧的动点.当A、B运动时,满足∠APQ=∠BPQ的斜率是否为定值,说明理由.魔方格
题型:宜宾一模难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为


2
2
,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+


2
=0相切.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A,B,设P为椭圆上一点,且满足


OA
+


OB
=t


OP
(O为坐标原点),求实数t的取值范围.
题型:不详难度:| 查看答案
在平面内,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点为F1,F2,椭圆的离心率为


3
2
,P点是椭圆上任意一点,且|PF1|+|PF2|=4,
(1)求椭圆的标准方程;
(2)以椭圆的上顶点B为直角顶点作椭圆的内接等腰直角三角形ABC,这样的等腰直角三角形是否存在?若存在请说明有几个、并求出直角边所在直线方程?若不存在,请说明理由.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是短轴长的两倍,焦距为


3
2

(1)求椭圆C的标准方程;
(2)设不过原点O的直线l与椭圆C交于两点M、N,且直线OM、MN、ON的斜率依次成等比数列,求△OMN面积的取值范围.
题型:不详难度:| 查看答案
已知点P(-1,
3
2
)是椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(1)求椭圆E的方程;
(2)设A、B是椭圆E上两个动点,


PA
+


PB


PO
(0<λ<4,且λ≠2).求证:直线AB的斜率等于椭圆E的离心率;
(3)在(2)的条件下,当△PAB面积取得最大值时,求λ的值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.