当前位置:高中试题 > 数学试题 > 直线与圆的位置关系 > 已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,且满足|PQ|=|PA|,(Ⅰ)求实数a,b间满足的等量关系;(...
题目
题型:不详难度:来源:
已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,且满足|PQ|=|PA|,
(Ⅰ)求实数a,b间满足的等量关系;
(Ⅱ)求线段PQ长的最小值.
答案
(Ⅰ)连结OP,因为Q是切点,可得PQ⊥QO,则|PQ|2+|QO|2=|OP|2
∵|PQ|=|PA|,∴a2+b2-1=(a-2)2+(b-1)2
化简得2a+b-3=0,即为实数a,b间满足的等量关系; …(6分)
(Ⅱ)由(I)2a+b-3=0,得b=-2a+3
∴|PQ|2=a2+b2-1=a2+(-2a+3)2-1=5(a-
6
5
2+
4
5

因此,当a=
6
5
时,线段PQ长的最小值为


4
5
=
2


5
5
…(12分)
核心考点
试题【已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,且满足|PQ|=|PA|,(Ⅰ)求实数a,b间满足的等量关系;(】;主要考察你对直线与圆的位置关系等知识点的理解。[详细]
举一反三
圆:x2+y2-2x-2y+1=0上的点到直线x-y=2的距离最大值是(  )
题型:北京模拟难度:| 查看答案
题型:不详难度:| 查看答案
A.2B.1+C.1+D.1+2
已知圆C:x2+y2-6x-4y+4=0,直线l1被圆所截得的弦的中点为P(5,3).
①求直线l1的方程.
②若直线l2:x+y+b=0与圆C相交,求b的取值范围.
③是否存在常数b,使得直线l2被圆C所截得的弦的中点落在直线l1上?若存在,求出b的值;若不存在,说明理由.
直线3x+4y-13=0与圆(x-2)2+(y-3)2=4的位置关系是(  )
题型:不详难度:| 查看答案
A.相切B.相交C.相离D.无法判定
若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y=17的距离等于1,则半径r的取值范围是(   )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
A.(0,2)B.(1,2)C.(1,3)D.(2,3)
已知圆C1:x2+y2-2x-4y-13=0与圆C2:x2+y2-2ax-6y+a2+1=0(其中a>0)相外切,且直线l:(m+1)x+y-7m-7=0与圆C2相切,求m的值.