当前位置:高中试题 > 数学试题 > 圆的方程 > 若原点在一圆上,而此圆的圆心为(3,4)则此圆的方程如何?...
题目
题型:不详难度:来源:
若原点在一圆上,而此圆的圆心为(3,4)则此圆的方程如何?
答案
因为原点在所求的圆上,所以原点到圆心的距离等于圆的半径,
则圆的半径R=


32+42
=5,又圆心为(3,4),
所以圆的方程为:(x-3)2+(y-4)2=25.
核心考点
试题【若原点在一圆上,而此圆的圆心为(3,4)则此圆的方程如何?】;主要考察你对圆的方程等知识点的理解。[详细]
举一反三
圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为 ______.
题型:上海难度:| 查看答案
(1)选修4-2矩阵与变换:
已知矩阵M=
.
2a
21
.
,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P′(-4,0).
①求实数a的值;
②求矩阵M的特征值及其对应的特征向量.
(2)选修4-4参数方程与极坐标:
已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是





x=


2
2
t+m
y=


2
2
t
(t是参数).若l与C相交于AB两点,且AB=


14

①求圆的普通方程,并求出圆心与半径;
②求实数m的值.
题型:不详难度:| 查看答案
求经过两圆(x+3)2+y2=13和x2+(y+3)2=37的交点,且圆心在直线x-y-4=0上的圆的方程.
题型:不详难度:| 查看答案
已知圆的方程为(x-a)2+(y-b)2=r2(r>0),下列结论错误的是(  )
A.当a2+b2=r2时,圆必过原点
B.当a=r时,圆与y轴相切
C.当b=r时,圆与x轴相切
D.当b<r时,圆与x轴相交
题型:不详难度:| 查看答案
以双曲线x2-y2=2的右焦点为圆心,且与其右准线相切的圆的方程是(  )
A.x2+y2-4x-3=0B.x2+y2-4x+3=0
C.x2+y2+4x-5=0D.x2+y2+4x+5=0
题型:福建难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.