当前位置:高中试题 > 数学试题 > 点到直线的距离 > 已知:椭圆C的中心在原点,焦点在x轴上,焦距为8,且经过点(0,3)(1)求此椭圆的方程(2)若已知直线l:4x-5y+40=0,问:椭圆C上是否存在一点,使它...
题目
题型:不详难度:来源:
已知:椭圆C的中心在原点,焦点在x轴上,焦距为8,且经过点(0,3)
(1)求此椭圆的方程
(2)若已知直线l:4x-5y+40=0,问:椭圆C上是否存在一点,使它到直线l的距离最小?最小距离是多少?
答案
(1)由题意知,2c=8,c=4,
∴b=3,
从而a2=b2+c2=25,
∴方程是
x2
25
+
y 2
9
=1
…(4分)
(2)由直线l的方程与椭圆的方程可以知道,直线l与椭圆不相交
设直线m平行于直线l,则直线m的方程可以写成4x-5y+k=0(1)
由方程组





4x-5y+k=0
x2
25
+
y 2
9
=1

消去y,得25x2+8kx+k2-225=0(2)
令方程(2)的根的判别式△=0,得64k2-4×25(k2-225)=0(3)
解方程(3)得k1=25或k2=-25,
∴当k1=25时,直线m与椭圆交点到直线l的距离最近,此时直线m的方程为4x-5y+25=0
直线m与直线l间的距离d=
|40-25|


42+52
=
15
41


41

所以,最小距离是
15
41


41
.…(8分)
核心考点
试题【已知:椭圆C的中心在原点,焦点在x轴上,焦距为8,且经过点(0,3)(1)求此椭圆的方程(2)若已知直线l:4x-5y+40=0,问:椭圆C上是否存在一点,使它】;主要考察你对点到直线的距离等知识点的理解。[详细]
举一反三
设x,y∈R,且满足x-y+2=0,则


x2+y2
的最小值为______.
题型:不详难度:| 查看答案
选修4-4:坐标系与参数方程
在平面直角坐标系xoy中,曲线C1的参数方程为





x=4cosθ
y=4sinθ
(θ为参数,且0≤θ≤2π),点M是曲线C1上的动点.
(Ⅰ)求线段OM的中点P的轨迹的直角坐标方程;
(Ⅱ)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,若直线l的极坐标方程为ρcosθ-ρsin+1=0(ρ>0),求点P到直线l距离的最大值.
题型:不详难度:| 查看答案
已知圆C的方程为:x2+y2+2x-4y-20=0,
(1)若直线l1过点A(2,-2)且与圆C相切,求直线l1的方程;
(2)若直线l2过点B(-4,0)且与圆C相交所得的弦长为8,求直线l2的方程.
题型:不详难度:| 查看答案
如果圆:x2+y2+2x+4y+m=0上恰有两点到直线l:x+y+1=0的距离为


2
,则m的取值范围是______.
题型:不详难度:| 查看答案
已知圆C1的圆心在直线l1:x-y=0上,且圆C1与直线x=1-2


2
相切于点A(1-2


2
,1),直线l2:x+y-8=0.
(1)求圆C1的方程;
(2)判断直线l2与圆C1的位置关系;
(3)已知半径为2


2
的动圆C2经过点(1,1),当圆C2与直线l2相交时,求直线l2被圆C2截得弦长的最大值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.