当前位置:高中试题 > 数学试题 > 点到直线的距离 > 已知圆A过点,且与圆B:关于直线对称.(1)求圆A的方程;(2)若HE、HF是圆A的两条切线,E、F是切点,求的最小值。(3)过平面上一点向圆A和圆B各引一条切...
题目
题型:不详难度:来源:
已知圆A过点,且与圆B:关于直线对称.
(1)求圆A的方程;
(2)若HE、HF是圆A的两条切线,E、F是切点,求的最小值。
(3)过平面上一点向圆A和圆B各引一条切线,切点分别为C、D,设,求证:平面上存在一定点M使得Q到M的距离为定值,并求出该定值.
答案
(1) (2) (3)
解析

试题分析:(1)求圆的方程即找到圆心和半径. 由圆的标准方程可看出圆B的圆心, 圆A 与圆B 关于直线对称可求出圆A的圆心.再由圆A 通过过点通过两点距离公式求出半径可求出圆A的标准方程.
(2) 求的最小值最好用一个变量来表示,表示长度和夹角都与长度有关,所以设,则由切割弦定理得,在直角三角形,则由二倍角公式可得,由数量积公式得,利用均值定理可求出最小值.
(3)切线长到点距离和半径表示出来,再根据得到关于一个方程可知轨迹是一个圆,所以存在一个定点的距离为定值.
试题解析:
(1)设圆A的圆心A(a,b),由题意得:解得,
设圆A的方程为,将点代入得r=2
∴圆A的方程为:     (4分)
(2)设


当且仅当时取等号,∴的最小值为   (9分)
(3)由(1)得圆A的方程为:,圆B:,由题设得,即
∴化简得:
∴存在定点M()使得Q到M的距离为定值.   (14分)
核心考点
试题【已知圆A过点,且与圆B:关于直线对称.(1)求圆A的方程;(2)若HE、HF是圆A的两条切线,E、F是切点,求的最小值。(3)过平面上一点向圆A和圆B各引一条切】;主要考察你对点到直线的距离等知识点的理解。[详细]
举一反三
若直线被圆截得的弦最短,则直线的方程是(    )
A.B.C.D.

题型:不详难度:| 查看答案
设A,B为直线与圆的两个交点,则|AB|=(    )
A.1 B.C.D.2

题型:不详难度:| 查看答案
直线 与圆C: 切于点,则a+b的值为(    )
A.1B.-1C.3D.-3

题型:不详难度:| 查看答案
与直线的交点的个数是_______
题型:不详难度:| 查看答案
已知直线l:y=x+m与曲线y=有两个公共点,则实数m的取值范围是_______
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.