当前位置:高中试题 > 数学试题 > 直线方程的概念与直线的斜率 > 在直角坐标平面上,向量OA=(4,1),向量OB=(2,-3),两向量在直线l上的正射影长度相等,则直线l的斜率为______....
题目
题型:不详难度:来源:
在直角坐标平面上,向量


OA
=(4,1)
,向量


OB
=(2,-3)
,两向量在直线l上的正射影长度相等,则直线l的斜率为______.
答案
设直线l的斜率为k,得直线l的方向向量为


OC
=( 1,k)

再设


OA


OB


OC
的夹角分别为θ1、θ2
|


OA
| cosθ1=


OA


OC
|


OC
|
|


OB
| cosθ2=


OB


OC
|


OC
|

因为


OA


OB
在直线l上的射影长度相等
所以


OA


OC
=


OB


OC

又∵向量


OA
=(4,1)
,向量


OB
=(2,-3)

即|4+k|=|2-3k|
解之得,k=3或k=-
1
2

故答案为:3或-
1
2
核心考点
试题【在直角坐标平面上,向量OA=(4,1),向量OB=(2,-3),两向量在直线l上的正射影长度相等,则直线l的斜率为______.】;主要考察你对直线方程的概念与直线的斜率等知识点的理解。[详细]
举一反三
(文)一过定点P(0,1)的直线l 截圆C:(x-1)2+y2=4所得弦长为2


2
,则直线l 的倾斜角α为______.
题型:武汉模拟难度:| 查看答案
已知直线l的倾斜角为
3
4
π,直线l1经过点A(3,2)、B(a,-1),且l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b等于(  )
A.-4B.-2C.0D.2
题型:不详难度:| 查看答案
已知直线的倾斜角的正弦值是


3
2
,则此直线的斜率是(  )
A.


3
B.-


3
C.


3
2
D.±


3
题型:不详难度:| 查看答案
已知直线l的方程为y=x+1,则该直线l的倾斜角为(  )
A.30°B.45°C.60°D.135°
题型:不详难度:| 查看答案
已知圆的方程为x2+y2-6x-8y=0,设圆中过点(2,5)的最长弦与最短弦为分别为AB、CD,则直线AB与CD的斜率之和为(  )
A.0B.-1C.1D.-2
题型:成都模拟难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.