当前位置:高中试题 > 数学试题 > 二面角 > 如图长方体中,AB=AD=2,CC1=,则二面角C1﹣BD﹣C的大小为(    )....
题目
题型:江苏月考题难度:来源:
如图长方体中,AB=AD=2,CC1=,则二面角C1﹣BD﹣C的大小为(    ).
答案
30°
核心考点
试题【如图长方体中,AB=AD=2,CC1=,则二面角C1﹣BD﹣C的大小为(    ).】;主要考察你对二面角等知识点的理解。[详细]
举一反三
如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(Ⅰ)证明:直线MN∥平面OCD;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求二面角A﹣OD﹣C的余弦值.
题型:江苏同步题难度:| 查看答案
选做题
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,
AF=AB=BC=FE=AD=1.
(1)求异面直线BF与DE所成的角的大小;
(2)求二面角A﹣CD﹣E的余弦值.
题型:江苏同步题难度:| 查看答案
如图,已知正方体ABCD﹣A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.
(1)求证:B1D⊥平面PQR;
(2)设二面角B1﹣PR﹣Q的大小为θ,求|cosθ|.
题型:江苏期末题难度:| 查看答案
如图,在四棱柱ABCD﹣A1B1C1D1中,侧面A1ADD1⊥底面ABCD,D1A=D1D=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:A1O∥平面AB1C;
(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.
题型:山东省期末题难度:| 查看答案
如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直.点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<
(1)求MN的长;
(2)a为何值时,MN的长最小;
(3)当MN的长最小时,求面MNA与面MNB所成二面角α的大小.
题型:山东省月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.