当前位置:高中试题 > 数学试题 > 线线角 > 空间内五个点中的任意三点都不共线,由这五个点为顶点只构造出四个三棱锥,则这五个点最多可以确定________个平面....
题目
题型:不详难度:来源:
空间内五个点中的任意三点都不共线,由这五个点为顶点只构造出四个三棱锥,则这五个点最多可以确定________个平面.
答案
7
解析

核心考点
试题【空间内五个点中的任意三点都不共线,由这五个点为顶点只构造出四个三棱锥,则这五个点最多可以确定________个平面.】;主要考察你对线线角等知识点的理解。[详细]
举一反三
在棱长为的正方体中,分别是棱的中点.

(Ⅰ)证明:平面
(Ⅱ)证明:
(Ⅲ)求三棱锥的体积.
题型:不详难度:| 查看答案

已知正四面的棱长为1,若以的方向为左视方向,则该正四面体的左视图与俯视图面积和的取值范围为          .
题型:不详难度:| 查看答案
如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.

(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求点D到平面ACE的距离。
题型:不详难度:| 查看答案
(本大题共12分)
如图  为正方体,一只青蛙开始在顶点A处,它每次可随意跳到相邻三顶点之一,若在五次内跳到点,则停止跳动;若5次内不能跳到点,跳完五次也停止跳动,求:

(1)5次以内能到点的跳法有多少种?
(2)从开始到停止,可能出现的跳法有多少种?
题型:不详难度:| 查看答案
(本小题满分12分)
如图(1)是一正方体的表面展开图,是两条面对角线,请在图(2)的正方体中将画出来,并就这个正方体解决下面问题.

(Ⅰ)求证:平面
(Ⅱ)求证:⊥平面
(Ⅲ)求二面角的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.