当前位置:高中试题 > 数学试题 > 线线角 > (本题满分12分)如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE.(2)设点M为线段AB的中点,点...
题目
题型:不详难度:来源:
(本题满分12分)
如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE.
(2)设点M为线段AB的中点,点N为线段

答案

证明:(1)因为BC⊥平面ABE,AE⊂平面ABE, 所以AE⊥BC.
又BF⊥平面ACE,AE⊂平面ACE,所以AE⊥BF,
又BF∩BC=B,所以AE⊥平面BCE.
又BE⊂平面BCE,所以AE⊥BE.              ……………………….6分
(2)取DE的中点P,连结PA、PN,因为点N为线段CE的中点,
所以PN∥DC,且PN=DC.
又四边形ABCD是矩形,点M为线段AB的中点,
所以AM∥DC,且AM=DC,
所以PN∥AM,且PN=AM,故四边形AMNP是平行四边形,所以MN∥AP.
而AP⊂平面DAE,MN⊄平面DAE,  所以MN∥平面DAE.     ……………………….12分
解析

核心考点
试题【(本题满分12分)如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE.(2)设点M为线段AB的中点,点】;主要考察你对线线角等知识点的理解。[详细]
举一反三
(12分) 如图,正三棱柱中,的中点,
(1)求证:∥平面
(2)求二面角的大小.

题型:不详难度:| 查看答案
如图(1)所示,一只装了水的密封瓶子,其内部可以看成是由半径为1cm和半径为3cm的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20cm,当这个几何体如图(3)水平放置时,液面高度为28cm,则这个简单几何体的总高度为(  )
A.29cm  B.30cm
C.32cm  D.48cm

题型:不详难度:| 查看答案
.已知不重合的平面、β和不重合的直线m、n,给出下列命题:
m∥n,n??m∥
m∥n,n??m与不相交;
∩β=m,n∥,n∥β?n∥m;
∥β,m∥β,m?m∥
m∥,n∥β,m∥n?∥β;
m?,n?β,⊥β?m⊥n;
m⊥,n⊥β,与β相交?m与n相交;
m⊥n,n?β,mβ?m⊥β;

其中正确的个数为(  )
A.1B.2C.3D.4

题型:不详难度:| 查看答案
如图,矩形ABCD中,AB=6,BC=2,沿对角线BD将△ABD向上折起,使点A移至点P,且点P在平面BCD内的投影O在CD上.
(1) 求二面角P-DB-C的正弦值;
(2) 求点C到平面PBD的距离.

题型:不详难度:| 查看答案
如图,在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且==λ(0<λ<1).
(1)判断EF与平面ABC的位置关系并给予证明;
(2)是否存在λ,使得平面BEF⊥平面ACD,如果存在,求出λ的值,如果不存在,说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.