当前位置:高中试题 > 数学试题 > 线线角 > (12分)已知四棱锥的底面为直角梯形,,底面,且,是的中点.(Ⅰ)证明:面面;(Ⅱ)求与所成的角余弦值;(Ⅲ)求面与面所成二面角的余弦值....
题目
题型:不详难度:来源:
(12分)已知四棱锥的底面为直角梯形,底面,且的中点.
(Ⅰ)证明:面
(Ⅱ)求所成的角余弦值;
(Ⅲ)求面与面所成二面角的余弦值.

答案
证明:以为坐标原点长为单位长度,如图建立空间直角坐标系,则各点坐标为
.
(Ⅰ)证明:因

由题设知,且是平面内的两条相交直线,由此得.又在面上,故面⊥面.               …………………… 3分 
(Ⅱ)解:因
    ……… 6分
(Ⅲ)解:在上取一点,则存在使
MC,只需解得

为所求二面角的平面角.


所以二面角的余弦值为   ……… 12分
 
解析

核心考点
试题【(12分)已知四棱锥的底面为直角梯形,,底面,且,是的中点.(Ⅰ)证明:面面;(Ⅱ)求与所成的角余弦值;(Ⅲ)求面与面所成二面角的余弦值.】;主要考察你对线线角等知识点的理解。[详细]
举一反三
如图,空间四边形S-ABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于(    )
A.90°         B.60°         C.45°         D.30°

题型:不详难度:| 查看答案
设α,β为两个不重合的平面, 为两两不重合的直线,
给出下列四个命题:
①若α∥β, ,则
②若, ,∥β,∥β,则α∥β;
③若∥α, ⊥β,则α⊥β;
④若,⊥m, ⊥n,则⊥α.
其中正确命题的序号是­_______________.
题型:不详难度:| 查看答案
(本题满分8分)如图,已知△ABC在平面α外,它的三边所在直线分别交平面α于点P、Q、R,求证:P、Q、R三点共线.

题型:不详难度:| 查看答案
(本题满分10分)如图,平行四边形EFGH的四个顶点分别在空间四边形ABCD的边AB、BC、CD、DA上,求证:BD∥面EFGH.

题型:不详难度:| 查看答案
(本题满分12分)如图,直三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°角,求二面角B-B1C-A的正弦值.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.