当前位置:高中试题 > 数学试题 > 线线角 > (本小题满分12分)在长方体中,分别是的中点,,.(Ⅰ)求证://平面;(Ⅱ)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由....
题目
题型:不详难度:来源:
(本小题满分12分)
在长方体中,分别是的中点,
.
(Ⅰ)求证://平面
(Ⅱ)在线段上是否存在点,使直线垂直,
如果存在,求线段的长,如果不存在,请说明理由.

答案

解:(Ⅰ)连接
在长方体中,
可知
则四边形是平行四边形,

分别是的中点

,又
//平面
(Ⅱ)在平面中作
于点,连接







 





为直角梯形,且高
.
 
解析

核心考点
试题【(本小题满分12分)在长方体中,分别是的中点,,.(Ⅰ)求证://平面;(Ⅱ)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.】;主要考察你对线线角等知识点的理解。[详细]
举一反三
(本小题满分14分)如图,正三棱柱的侧棱长和底面边长均为的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:∥平面
(Ⅲ)求三棱锥的体积.
题型:不详难度:| 查看答案
已知m、n表示直线,α、β、γ 表示平面,给出下列四个命题,其中真命题为    (    )
①α∩β=m,n≌αn⊥m则a⊥β ②a⊥β,a∩γ=m,β∩γ="n" 则n⊥m
③m⊥a,m⊥β,则α∥β   ④m⊥α,n⊥β,m⊥n,则α⊥β
A.①②B.③④C.②③D.②④

题型:不详难度:| 查看答案
(本题满分13分)如图所示,三棱柱ABC—A1B1Cl中,AB=AC=AA1=2,面ABC1⊥面AAlClC,∠AAlCl=∠BAC1=600,AC1与A1C相交于0.
(1)求证.BO上面AAlClC;
(2)求三棱锥C1—ABC的体积;
(3)求二面角A1—B1C1—A的余弦值.

题型:不详难度:| 查看答案
.(本题满分12分)如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(1)求证:AB1// 面BDC1
(2)求二面角C1—BD—C的余弦值;
(3)在侧棱AA­1上是否存在点P,使得CP⊥面BDC1?并证明你的结论.

题型:不详难度:| 查看答案
(本小题满分13分)
如图,正方形所在的平面与平面垂直, 的交点,
,
(I)求证:                      
(II)求直线与平面所成的角的大小;
(III)求锐二面角的大小.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.