当前位置:高中试题 > 数学试题 > 线线角 > 已知、是两条不同的直线,、是两个不同的平面,则下列命题中正确的是A.若,且,则B.若,且,则C.若,且,则D.若,且,则...
题目
题型:不详难度:来源:
已知是两条不同的直线,是两个不同的平面,则下列命题中正确的是
A.若,且,则
B.若,且,则
C.若,且,则
D.若,且,则

答案
A
解析

试题分析:对于A.若,且,则 符合面面垂直判定定理,成立。
对于B.若,且,则,只有当m,n相交的时候能成立,故错误。
对于C.若,且,则 ,那么两个平面可能是一般的相交,不一定垂直,错误。
对于D.根据两条平行线中的一条垂直与该平面,则另一条也垂直与该平面,那么可知两个平面可能是一般相交,因此错误,故选A.
点评:熟练的运用面面的平行的位置关系中判定定理和性质定理来分析证明,属于基础题。考查了空间想象能力。
核心考点
试题【已知、是两条不同的直线,、是两个不同的平面,则下列命题中正确的是A.若,且,则B.若,且,则C.若,且,则D.若,且,则】;主要考察你对线线角等知识点的理解。[详细]
举一反三
(本小题满分13分)
如图1,在等腰梯形中,上一点, ,且.将梯形沿折成直二面角,如图2所示.

(Ⅰ)求证:平面平面
(Ⅱ)设点关于点的对称点为,点所在平面内,且直线与平面所成的角为,试求出点到点的最短距离.
题型:不详难度:| 查看答案
为使互不重合的平面,是互不重合的直线,给出下列四个命题:
         
 
 
④若
其中正确命题的序号为         
题型:不详难度:| 查看答案
(本题满分10分)
如图,已知三棱锥OABC的侧棱OAOBOC两两垂直,且OA=2,OB=3,OC=4,EOC的中点.

(1)求异面直线BEAC所成角的余弦值;
(2)求二面角ABEC的余弦值.
题型:不详难度:| 查看答案
如图所示,在正四棱锥S-ABCD中,的中点,P点在侧面△SCD内及其边界上运动,并且总是保持.则动点的轨迹与△组成的相关图形最有可有是图中的(  )
题型:不详难度:| 查看答案
(本小题满分12分)
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.