当前位置:高中试题 > 数学试题 > 线线角 > 如图,正方体ABCD—A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.(1)求GH长的取值范围;(2)当...
题目
题型:不详难度:来源:
如图,正方体ABCD—A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.

(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线的距离.
答案
(1)[2,4] (2)
解析

试题分析:解:(1)以D为原点,DA,DC,DD1分别为x轴,y轴,z轴建立空间直角坐标系.
设DG=a,DH=b,则E(4,0,4),F(0,4,4),G(a,0,0),H(0,b,0).
=(-4,b,-4),=(a,-4,-4).
∵EH⊥FG.
·=-4a-4b+16=0,则a+b=4,即b=4-a.
又G1H在棱DA,DC上,则0≤a≤8,0≤b≤8,从而0≤a≤4.
∴GH==
∴GH取值范围是[2,4] .       ……6分
(2)当GH=2时,a=2,b=2.
=(-2,2,0),=(-4,4,0),即=2
∴EF∥GH,即EH与FG共面.
所以EF=2GH,EF∥GH,则
设P(x1,y1,z1),则=(x1-4,y,z1-4).
∴x1=,y1=,z1=,即P().
则P()在底面上ABCD上的射影为M(,0).又B(8,8,0),
所以为点P到直线的距离.     ……12分

点评:关键是通过建立空间直角坐标系,然后表示点的坐标以及点在平面的射影得到距离,属于基础题。
核心考点
试题【如图,正方体ABCD—A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.(1)求GH长的取值范围;(2)当】;主要考察你对线线角等知识点的理解。[详细]
举一反三
如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.

(Ⅰ)求证:平面
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角的余弦值.
题型:不详难度:| 查看答案
已知四边形ABCD为平行四边形,BC⊥平面ABEAEBEBE = BC = 1,AE = M为线段AB的中点,N为线段DE的中点,P为线段AE的中点。

(1)求证:MNEA
(2)求四棱锥MADNP的体积。
题型:不详难度:| 查看答案
如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。

(I)求证:A1B∥平面AMC1
(II)求直线CC1与平面AMC1所成角的正弦值;
(Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位置;若不存在,请说明理由。
题型:不详难度:| 查看答案
为两两不重合的平面,为两两不重合的直线,给出下列四个命题:
①若,则
②若,则
③若,则
④若,则其中真命
题的个数是 (  )))
A.1B.2C.3D.4

题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

求证:(1)PC⊥BC;
(2)求点A到平面PBC的距离。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.