当前位置:高中试题 > 数学试题 > 线线角 > 在等腰梯形中,,,,是的中点.将梯形绕旋转,得到梯形(如图).(1)求证:平面; (2)求证:平面;(3)求二面角的余弦值....
题目
题型:不详难度:来源:
在等腰梯形中,的中点.将梯形旋转,得到梯形(如图).

(1)求证:平面
(2)求证:平面
(3)求二面角的余弦值.
答案
(1)根据题意,由于即由已知可知 平面平面,结合面面垂直的性质定理得到.
(2)结合题意,得到面平面,又因为平面,所以 平面 从而得到证明.
(3)
解析

试题分析:(1)证明:因为的中点
所以,又
所以四边形是平行四边形,所以
又因为等腰梯形,
所以 ,所以四边形是菱形,所以

所以,即
由已知可知 平面平面
因为 平面平面
所以平面                  4分
(2)证明:因为
 
所以平面平面
又因为平面,所以 平面              8分
(3)因为平面,同理平面,建立如图如示坐标系

,, ,       9分

设平面的法向量为,有  
设平面的法向量为,有
                                    12分
所以                                 13分
由图形可知二面角为钝角
所以二面角的余弦值为.                       14分
点评:主要是考查了线面平行以及面面平行的性质定理的运用,以及二面角的求解,属于基础题.
核心考点
试题【在等腰梯形中,,,,是的中点.将梯形绕旋转,得到梯形(如图).(1)求证:平面; (2)求证:平面;(3)求二面角的余弦值.】;主要考察你对线线角等知识点的理解。[详细]
举一反三
直线a,b,c及平面a,b,γ,有下列四个命题:
①.若;②。若
③.若,则;       ④。若,则
其中正确的命题序号是                ;
题型:不详难度:| 查看答案
已知在四棱锥中,底面是边长为2的正方形,侧棱平面,且为底面对角线的交点,分别为棱的中点

(1)求证://平面
(2)求证:平面
(3)求点到平面的距离。
题型:不详难度:| 查看答案
如图,正三棱锥O﹣ABC的底面边长为2,高为1,求该三棱锥的体积及表面积.
题型:不详难度:| 查看答案
在棱长为的正方体中,错误的是(    )
A.直线和直线所成角的大小为
B.直线平面
C.二面角的大小是
D.直线到平面的距离为

题型:不详难度:| 查看答案
如图,△是等边三角形, 分别是的中点,将△沿折叠到的位置,使得.
   
(1)求证:平面平面
(2)求证:平面.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.