当前位置:高中试题 > 数学试题 > 线线角 > 已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点(1)求证:AN∥平面 MBD...
题目
题型:不详难度:来源:
已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点

(1)求证:AN∥平面 MBD;  
(2)求异面直线AN与PD所成角的余弦值;
(3)求二面角M-BD-C的余弦值.
答案
(1)证明见解析;(2);(3)
解析

试题分析:
解题思路:(1)构造三角形的中位线,出现线线平行,利用线面平行的判定即得线面平行;(2)建立空间直角坐标系,利用空间向量求异面直线所成角的余弦值;(3)建立空间直角坐标系,利用空间向量求二面角的余弦值.
规律总结:对于空间几何体中的垂直、平行关系的判定,要牢牢记住有关判定定理与性质定理并灵活进行转化,线线关系是关键;涉及夹角、距离的求解问题以及开放性问题,要注意恰当建立空间直角坐标系,利用空间向量进行求解.
试题解析:(1)证明:连结AC交BD于O,连结OM,
∵底面ABCD为矩形,∴O为AC中点,
∵M、N为侧棱PC的三等分点,∴CM=MN,
∴OM∥AN, ∵平面MBD,AN平面MBD
∴AN∥平面MBD                                  
(2)如图所示,以A为原点,建立空间直角坐标系A-xyz,
则A(0,0,0),B(3,0,0), C(3,6,0),D(0,6,0)
P(0,0,3),M(2,4,1),N(1,2,2)
                           
                 
∴异面直线AN与PD所成的角的余弦值为       
(3)∵侧棱PA⊥底面ABCD
∴平面BCD的一个法向量为
设平面MBD的法向量为
并且
,令y=1,得x=2,z=-2
∴平面MBD的一个法向量为          

由图知二面角是锐角
∴二面角的余弦值为.
核心考点
试题【已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点(1)求证:AN∥平面 MBD】;主要考察你对线线角等知识点的理解。[详细]
举一反三
已知则 ( )
A.B.C.D.

题型:单选题难度:简单| 查看答案
已知有限集.如果中元素满足,就称为“复活集”,给出下列结论:
①集合是“复活集”;
②若,且是“复活集”,则
③若,则不可能是“复活集”;
④若,则“复合集”有且只有一个,且
其中正确的结论是           .(填上你认为所有正确的结论序号).
题型:填空题难度:一般| 查看答案
已知集合.
(1)若= 3,求
(2)若,求实数的取值范围.
题型:填空题难度:一般| 查看答案
已知互异的复数a,b满足ab≠0,集合{a,b}={,},则=      .
题型:填空题难度:简单| 查看答案
若集合且下列四个关系:
;②;③;④有且只有一个是正确的,则符合条件的有序数组的个数是_________.
题型:填空题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.