当前位置:高中试题 > 数学试题 > 面面垂直 > 如图①,E,F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1﹣EF﹣B,若M为线段A1C中点.求证:(...
题目
题型:江苏月考题难度:来源:
如图①,E,F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1﹣EF﹣B,若M为线段A1C中点.求证:
(1)直线FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
答案

证明:(1)取A1B中点N,连接NE,NM,
则MN,EF,所以MNFE,
所以四边形MNEF为平行四边形,所以FM∥EN,
又因为FM平面A1EB,EN平面A1EB,
所以直线FM∥平面A1EB.
(2)因为E,F分别AB和AC的中点,
所以A1F=FC,所以FM⊥A1C
同理,EN⊥A1B,
由(1)知,FM∥EN,所以FM⊥A1B
又因为A1C∩A1B=A1,所以FM?⊥平面A1BC,
又因为FM平面A1FC
所以平面A1FC⊥平面A1BC.

核心考点
试题【如图①,E,F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1﹣EF﹣B,若M为线段A1C中点.求证:(】;主要考察你对面面垂直等知识点的理解。[详细]
举一反三
如图,在直三棱柱ABC﹣A1B1C1中,点D、E分别在边BC、B1C1上,CD=B1E=AC,∠ACD=60°.求证:
(1)BE∥平面AC1D;
(2)平面ADC1⊥平面BCC1B1
题型:江苏期末题难度:| 查看答案
如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使
∠BDC=90°.
(1)若E,F分别为 AB,AC的中点,求证:EF∥平面BDC;
(2)证明:平面ADB⊥平面BDC;
(3 )设BD=1,求三棱锥D﹣ABC的表面积.
题型:江苏同步题难度:| 查看答案
如图,斜三棱柱A1B1C1﹣ABC中,侧面AA1C1C⊥底面ABC,侧面AA1C1C是菱形,,E、F分别是A1C1、AB的中点.求证:
(1)EF∥平面BB1C1C;
(2)平面CEF⊥平面ABC.
题型:江苏期末题难度:| 查看答案
如图:已知正方体ABCD﹣A1B1C1D1中,点F为A1D的中点.
(1)求证:A1B⊥平面AB1D;
(2)求证:平面A1B1CD⊥平面AFC.
题型:江苏期中题难度:| 查看答案
如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD把△ABC折起,使∠BDC=60°.
(1)证明:平面ADB⊥平面BDC;
(2)设E为BC的中点,求异面直线AE与DB所成角的大小.
题型:月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.