当前位置:高中试题 > 数学试题 > 面面垂直 > 在如图所示的四棱锥P-ABCD中,已知PA⊥平面ABCD,AB∥DC,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.(1)求证:平面PAC⊥...
题目
题型:不详难度:来源:
在如图所示的四棱锥P-ABCD中,已知PA⊥平面ABCD,ABDC,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.
(1)求证:平面PAC⊥平面PBC;
(2)求二面角A-PB-C的平面角的正切值.
答案
(1)取AB的中点H,连接CH,则CH⊥AB
∵PA⊥平面ABCD,∴PA⊥BC,∵ABDC,∠DAB=90°,
∴AC=BC=


2

又AC2+BC2=2+2=AB2,∴AC⊥BC,
∴BC⊥平面PAC,∵BC⊂平面PBC,
∴平面PAC⊥平面PBC….(7分)
(2)取AB的中点H,连接CH,则由题意得
CH⊥AB,又PA⊥平面ABCD,所以PA⊥CH,
则CH⊥平面PAB.所以CH⊥PB,过H作HG⊥PB于G,连接CG,则PB⊥平面CGH,
所以CG⊥PB,则∠CGH为二面角A-PB-C的平面角…(10分)
∵PA=1,∴CH=1,AB=2,PB=


PA2+AB2
=


5

则GH=BHsin∠PBA=BH
PA
AB
=
1


5

∴tan∠CGH=
CH
GH
=


5
…(13分)
故二面角A-PB-C的平面角的正切值为


5
…(14分)
核心考点
试题【在如图所示的四棱锥P-ABCD中,已知PA⊥平面ABCD,AB∥DC,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.(1)求证:平面PAC⊥】;主要考察你对面面垂直等知识点的理解。[详细]
举一反三
如图,在梯形ABCD中,ABCD,∠ADC=90°,3AD=DC=3,AB=2,E是DC上点,且满足DE=1,连接AE,将△DAE沿AE折起到△D1AE的位置,使得∠D1AB=60°,设AC与BE的交点为O.
(1)试用基向量


AB


AE


AD1
表示向量


OD1

(2)求异面直线OD1与AE所成角的余弦值;
(3)判断平面D1AE与平面ABCE是否垂直?并说明理由.
题型:不详难度:| 查看答案
如图,在直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.
(1)求证:BC1平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B.
题型:不详难度:| 查看答案
如图所示,△ABC为正三角形,EC⊥底面ABC,BDCE,且CE=CA=2BD,M是EA的中点,
求证:(1)DE=DA;
(2)面BDM⊥面ECA.
题型:不详难度:| 查看答案
如图,在棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是菱形,且∠ADC=60°,M为PB的中点,
(1)求证:PA⊥CD;
(2)求二面角P-AB-D的大小;
(3)求证:平面CDM⊥平面PAB.
题型:不详难度:| 查看答案
在正方体ABCD-A1B1C1D1中,M,N分别是棱AB,BC上异于端点的点,
(1)证明△B1MN不可能是直角三角形;
(2)如果M,N分别是棱AB,BC的中点,
(ⅰ)求证:平面B1MN⊥平面BB1D1D;
(ⅱ)若在棱BB1上有一点P,使得B1D面PMN,求B1P与PB的比值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.