当前位置:高中试题 > 数学试题 > 线面垂直 > 如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°, AP=AC, 点D,E分别在棱PB,PC上,且BC∥平面ADE。(Ⅰ)求证:DE⊥平面PAC;...
题目
题型:0119 月考题难度:来源:
如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°, AP=AC, 点D,E分别在棱PB,PC上,且BC∥平面ADE。
(Ⅰ)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比。
答案
(Ⅰ)证明:BC∥平面ADE,BC平面PBC,平面PBC∩平面ADE=DE,
∴BC∥ED,
∵PA⊥底面ABC,BC底面ABC,
∴PA⊥BC,
又∠BCA=90°,
∴AC⊥BC,
∵PA∩AC=A,
∴BC⊥平面PAC,
∴DE⊥平面PAC。
(Ⅱ)解:由(Ⅰ)知,DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,
∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角的平面角,
∴∠AEP=90°,即AE⊥PC, 
∵AP=AC,
∴E是PC的中点,ED是PBC的中位线,
核心考点
试题【如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°, AP=AC, 点D,E分别在棱PB,PC上,且BC∥平面ADE。(Ⅰ)求证:DE⊥平面PAC;】;主要考察你对线面垂直等知识点的理解。[详细]
举一反三
如图所示,PA⊥平面ABCD,底面ABCD为菱形,∠ABC=60°,PA=AB=2,N为PC的中点.
(1)求证:BD⊥平面PAC;
(2)求二面角B-AN-C的正切值.
题型:0122 月考题难度:| 查看答案
如图所示,PA⊥平面ABCD,底面ABCD为菱形,∠ABC=60°,PA=AB=2,N为PC的中点。
(1)求证:BD⊥平面PAC;
(2)求二面角B-AN-C的正切值。
题型:0122 月考题难度:| 查看答案
如图所示,多面体EF-ABCD中,ABCD是梯形,AB∥CD,ACFE是矩形,平面ACFE⊥平面ABCD,AD=DC=CB=AE=a,∠ACB=
(1)求证:BC⊥平面ACFE;
(2)若M是棱EF上一点,AM∥平面BDF,求EM;
(3)求二面角B-EF-D的平面角的余弦值。
题型:0123 月考题难度:| 查看答案
如图,在侧棱和底面垂直的四棱柱ABCD-A1B1C1D1中,当底面ABCD 满足条件(    )时,有AC⊥B1D1。(写出你认为正确的一种条件即可)
题型:山西省期末题难度:| 查看答案
如图,在棱长为1的正方体ABCD-A1B1C1D1中,
(1)求证:AC⊥平面B1BDD1
(2)求三棱锥B-ACB1的体积.
题型:新疆自治区期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.