当前位置:高中试题 > 数学试题 > 线面垂直 > 如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上异于A、B的任意一点,AN⊥PM,点N为垂足,求证:AN⊥平面PBM....
题目
题型:不详难度:来源:
如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上异于A、B的任意一点,AN⊥PM,点N为垂足,求证:AN⊥平面PBM.
答案
证明:∵AB是圆的直径,M是圆周上异于A、B的任意一点,
∴AM⊥BM,
∵PA⊥平面ABM,BM⊂平面ABM,
∴PA⊥BM.
又∵PA∩AM=A,PA⊂平面PAM,AC⊂平面PAM,
∴BM⊥平面PAM,
又∵AN⊂平面PAM,
∴AN⊥BM,
又∵AN⊥PM,BM∩PM=M.
∴AN⊥平面PBM.
核心考点
试题【如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上异于A、B的任意一点,AN⊥PM,点N为垂足,求证:AN⊥平面PBM.】;主要考察你对线面垂直等知识点的理解。[详细]
举一反三
P为矩形ABCD所在平面外一点,且PA⊥平面ABCD,P到B,C,D三点的距离分别是


5


17


13
,则P到A点的距离是______.
题型:不详难度:| 查看答案
如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的大小;
(Ⅲ)求点D到平面ACE的距离.
题型:不详难度:| 查看答案
已知四棱锥S-ABCD中,侧棱SA⊥底面ABCD,且底面ABCD是边长为2的正方形,SA=2,AC与BD相交于点O.
(1)证明:SO⊥BD;
(2)求三棱锥O-SCD的体积.
题型:不详难度:| 查看答案
△OAB是边长为4的正三角形,CO⊥平面OAB且CO=2,设D、E分别是OA、AB的中点.
(1)求证:OB平面CDE;
(2)求三棱锥O-CDE的体积;
(3)在CD上是否存在点M,使OM⊥平面CDE,若存在,则求出M点的位置,若不存在,请说明理由.
题型:不详难度:| 查看答案
四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1.E为BC的中点.
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?
(3)若存在,求线段AS的长;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.