当前位置:高中试题 > 数学试题 > 线线、线面平行 > 若正四棱柱ABCD-A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为(  )A.33B.1C.2D.3...
题目
题型:北京难度:来源:
若正四棱柱ABCD-A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为(  )
A.


3
3
B.1C.


2
D.


3
答案

魔方格
依题意,BB1的长度即A1C1到底面ABCD的距离,
∠B1AB=60°,BB1=1×tan60°=


3

故选D.
核心考点
试题【若正四棱柱ABCD-A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为(  )A.33B.1C.2D.3】;主要考察你对线线、线面平行等知识点的理解。[详细]
举一反三
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=CC1,M,N分别为A1B,B1C1的中点.
(1)求证:MN平面ACC1A1
(2)求证:MN⊥平面A1BC.魔方格
题型:不详难度:| 查看答案
如图,四棱锥P-ABCD中,PA⊥平面ABCD,PB与平面ABCD所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=
1
2
AD.
(1)求证:平面PAC⊥面PCD;
(2)在棱PD上找一点E,使CE面PAB,并说明理由;
(3)在(2)的前提下,求二面角E-AC-D的大小.魔方格
题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面为直角梯形,∠BAD=90°,BCAD,且PA=AB=BC=1,AD=2.
(Ⅰ)设M为PD的中点,求证:CM平面PAB;
(Ⅱ)求侧面PAB与侧面PCD所成二面角的平面角的正切值.魔方格
题型:不详难度:| 查看答案
如图,正三棱柱ABC-A1B1C1的各棱长都相等,D、E分别是CC1和AB1的中点,点F在BC上且满足BF:FC=1:3.
(1)若M为AB中点,求证:BB1平面EFM;
(2)求证:EF⊥BC;
(3)求二面角A1-B1D-C1的大小.魔方格
题型:不详难度:| 查看答案
设α、β表示平面,l表示不在α内也不在β内的直线,给出下列命题:
①若l⊥α,lβ,则α⊥β;
②若lβ,α⊥β,则l⊥α;
③若l⊥α,α⊥β,则lβ.
其中正确的命题是(  )
A.①③B.①②C.②③D.①②③
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.