当前位置:高中试题 > 数学试题 > 线线、线面平行 > 已知正六棱柱ABCDEF-A1B1C1D1E1F1的所有棱长均为2,G为AF的中点.(1)求证:F1G∥平面BB1E1E;(2)求证:平面F1AE⊥平面DEE1...
题目
题型:不详难度:来源:
已知正六棱柱ABCDEF-A1B1C1D1E1F1的所有棱长均为2,G为AF的中点.
(1)求证:F1G平面BB1E1E;
(2)求证:平面F1AE⊥平面DEE1D1
(3)求四面体EGFF1的体积.
答案

(1)证明:因为AFBE,AF⊄平面BB1E1E,
所以AF平面BB1E1E,(2分)
同理可证,AA1平面BB1E1E,(3分)
所以,平面AA1F1F平面BB1E1E(4分)
又F1G⊂平面AA1F1F,所以F1G平面BB1E1E(5分)
(2)因为底面ABCDEF是正六边形,所以AE⊥ED,(7分)
又E1E⊥底面ABCDEF,所以E1E⊥AE,
因为E1E∩ED=E,所以AE⊥平面DD1E1E,(9分)
又AE⊂平面F1AE,所以平面F1AE⊥平面DEE1D1(10分)
(3)∵F1F⊥底面FGE,
VE-GFF1=VF1-GFE=
1
3
S△GEF•FF1=
1
3
×
1
2
×1×2sin120o×2
=


3
3
核心考点
试题【已知正六棱柱ABCDEF-A1B1C1D1E1F1的所有棱长均为2,G为AF的中点.(1)求证:F1G∥平面BB1E1E;(2)求证:平面F1AE⊥平面DEE1】;主要考察你对线线、线面平行等知识点的理解。[详细]
举一反三
如图,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=


2
,E、F、G分别A1B1、B1C1、BB1的中点.
(1)求直线D1B与平面ABCD所成角的大小.
(2)求证:AC平面EGF.
题型:不详难度:| 查看答案
如图在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱PD⊥底面ABCD,PD=BC,E是PC的中点,求证:PA平面EDB.
题型:不详难度:| 查看答案
在长方体ABCD-A1B1C1D1中,AB=BC=2,O为AC和BD的交点,过A、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-AC1Dl,且这个几何体的体积为.
(1)求证:OD1平面BA1C1
(2)求棱A1A的长:
(3)求点D1到平面BA1C1的距离.
题型:不详难度:| 查看答案
设四棱锥P-ABCD中,底面ABCD是边长为2的正方形,且PA⊥面ABCD,PA=AB,E为PD的中点.
(1)求证:直线PB面ACE
(2)求证:直线AE⊥面PCD
(3)求直线AC与平面PCD所成角的大小.
题型:不详难度:| 查看答案
已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,且∠BAC=90°,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.
(Ⅰ)求证:DE平面ABC;
(Ⅱ)求证:B1F⊥平面AEF;
(Ⅲ)求二面角A-EB1-F的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.