当前位置:高中试题 > 数学试题 > 柱锥台的表面积 > 如图,四边形ABCD是边长为2的正方形,直线l与平面ABCD平行,E和F是l上的两个不同点,且EA=ED,FB=FC.E′和F′是平面ABCD内的两点,EE′和...
题目
题型:不详难度:来源:
如图,四边形ABCD是边长为2的正方形,直线l与平面ABCD平行,EFl上的两个不同点,且EAEDFBFC.E′和F′是平面ABCD内的两点,EE′和FF′都与平面ABCD垂直.

(1)证明:直线EF′垂直且平分线段AD
(2)若∠EAD=∠EAB=60 °,EF=2.求多面体ABCDEF的体积.
答案
(1)见解析(2)2.
解析
(1)证明 ∵EAEDEE′⊥平面ABCD
EDEA,∴点E′在线段AD的垂直平分线上.
同理,点F′在线段BC的垂直平分线上.
又四边形ABCD是正方形,
∴线段BC的垂直平分线也就是线段AD的垂直平分线,即点E′、F′都在线段AD的垂直平分线上.
∴直线EF′垂直且平分线段AD.
(2)解 如图,连接EBEC,由题意知多面体ABCDEF可分割成正四棱锥E­ABCD和正四面体E­BCF两部分.设AD的中点为M,在Rt△MEE′中,由于ME′=1,ME,∴EE′=.

VE­ABCD·S正方形ABCD·EE′=×22×.
VE­BCFVC­BEFVC­BEAVE­ABCSABC·EE′=××22×
∴多面体ABCDEF的体积为VE­ABCDVE­BCF=2.
核心考点
试题【如图,四边形ABCD是边长为2的正方形,直线l与平面ABCD平行,E和F是l上的两个不同点,且EA=ED,FB=FC.E′和F′是平面ABCD内的两点,EE′和】;主要考察你对柱锥台的表面积等知识点的理解。[详细]
举一反三
已知四棱锥P­ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCDEF分别为棱BCAD的中点.
 
(1)求证:DE∥平面PFB
(2)已知二面角P­BF­C的余弦值为,求四棱锥P­ABCD的体积.
题型:不详难度:| 查看答案
有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.
题型:不详难度:| 查看答案
在直角梯形ABCD中,ABCDADABCD=2AB=4,ADECD的中点,将△BCE沿BE折起,使得CODE,其中垂足O在线段DE内.

(1)求证:CO⊥平面ABED
(2)问∠CEO(记为θ)多大时,三棱锥CAOE的体积最大,最大值为多少.
题型:不详难度:| 查看答案
如图,在三棱柱ABCA1B1C1中,CACBABAA1,∠BAA1=60°.

(1)证明:ABA1C
(2)若ABCB=2,A1C,求三棱柱ABCA1B1C1的体积;
(3)若平面ABC⊥平面AA1B1BABCB=2,求直线A1C与平面BB1C1C所成角的正弦值.
题型:不详难度:| 查看答案
如图所示,图(2)中实线围成的部分是长方体(图(1))的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点.它落在长方体的平面展开图内的概率是,则此长方体的体积是________.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.