当前位置:高中试题 > 数学试题 > 柱锥台的表面积 > 如图(1)所示,⊙O的直径AB=4,点C,D为⊙O上两点,且∠CAB=45°,∠DAB=60°,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图(2...
题目
题型:不详难度:来源:
如图(1)所示,⊙O的直径AB=4,点C,D为⊙O上两点,且∠CAB=45°,∠DAB=60°,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图(2)所示).
 
(1)求证:OF∥平面ACD;
(2)在上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置,并求点G到平面ACD的距离;若不存在,请说明理由.
答案
(1)见解析(2)存在,h=
解析
(1)证明:如图所示,联结CO,

∵∠CAB=45°,∴CO⊥AB,
又∵F为的中点,∴∠FOB=45°,
∴OF∥AC.
∵OF平面ACD,AC平面ACD,
∴OF∥平面ACD.
(2)设在上存在点G,使得FG∥平面ACD,联结OG,如图.
∵OF∥平面ACD,OF∩FG=F,∴平面OFG∥平面ACD,
∴OG∥AD,∠BOG=∠BAD=60°.
因此,在上存在点G,使得FG∥平面ACD,且点G为的中点.
联结AG,过C作CE⊥AD于E,联结OE,设点G到平面ACD的距离为h.
∵S△ACD·AD·CE=×2×,S△GAD=S△OAD×2×
∴由V三棱锥G-ACD=V三棱锥C-AGD,得××h=××2,则h=.
核心考点
试题【如图(1)所示,⊙O的直径AB=4,点C,D为⊙O上两点,且∠CAB=45°,∠DAB=60°,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图(2】;主要考察你对柱锥台的表面积等知识点的理解。[详细]
举一反三
如图所示,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为________.

题型:不详难度:| 查看答案
已知三边长分别为4、5、6的△ABC的外接圆恰好是球O的一个大圆,P为球面上一点,若点P到△ABC的三个顶点的距离相等,则三棱锥P­ABC的体积为(  )
A.5 B.10
C.20 D.30

题型:不详难度:| 查看答案
如图,在三棱柱A1B1C1­ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F­ADE的体积为V1,三棱柱A1B1C1­ABC的体积为V2,则V1∶V2=________.

题型:不详难度:| 查看答案
如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D,E分别是AA1,CB1的中点,DE⊥面CBB1.

(1)证明:DE∥面ABC;
(2)求四棱锥C­ABB1A1与圆柱OO1的体积比.
题型:不详难度:| 查看答案
在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,且△ABC,△ACD,△ADB的面积分别为,则该三棱锥外接球的表面积为(  )
A.2πB.6πC.4πD.24π

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.