当前位置:高中试题 > 数学试题 > 柱锥台的表面积 > 在四棱锥P -ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.(1)求四棱锥...
题目
题型:不详难度:来源:
在四棱锥P -ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.

(1)求四棱锥的体积.
(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.
答案
(1)2    (2)
解析
(1)在四棱锥P-ABCD中,
∵PO⊥平面ABCD,
∴∠PBO是PB与平面ABCD所成的角,
即∠PBO=60°.
在Rt△POB中,
∵BO=AB·sin30°=1,
又PO⊥OB,
∴PO=BO·tan60°=,
∵底面菱形的面积S菱形ABCD=2.
∴四棱锥P -ABCD的体积
VP -ABCD=×2×=2.
(2)取AB的中点F,连接EF,DF,

∵E为PB中点,
∴EF∥PA.
∴∠DEF为异面直线DE与PA所成角(或补角).
在Rt△AOB中,
AO=AB·cos30°==OP,
∴在Rt△POA中,PA=,
∴EF=.
∵四边形ABCD为菱形,且∠DAB=60°,
∴△ABD为正三角形.
又∵∠PBO=60°,BO=1,
∴PB=2,∴PB=PD=BD,即△PBD为正三角形,
∴DF=DE=,
∴cos∠DEF=
===.
即异面直线DE与PA所成角的余弦值为.
核心考点
试题【在四棱锥P -ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.(1)求四棱锥】;主要考察你对柱锥台的表面积等知识点的理解。[详细]
举一反三
底面直径和高都是的圆柱的侧面积为(   )
A.B.C.   D.

题型:不详难度:| 查看答案
已知一个正方体的所有顶点在一个球面上,若正方体的棱长为,则球的体积为       .
题型:不详难度:| 查看答案
如图,在四棱锥PABCD中,平面PAD⊥平面ABCDABDC,△PAD是等边三角形,已知AD=4,BD=4AB=2CD=8.

(1)设MPC上的一点,证明:平面MBD⊥平面PAD
(2)当M点位于线段PC什么位置时,PA∥平面MBD?
(3)求四棱锥PABCD的体积.
题型:不详难度:| 查看答案
如图甲,⊙O的直径AB=2,圆上两点CD在直径AB的两侧,且∠CAB,∠DAB.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),FBC的中点,EAO的中点.根据图乙解答下列各题:
 
(1)求三棱锥CBOD的体积;
(2)求证:CBDE
(3)在上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知三棱柱ABCA1B1C1,底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球的体积为,则该三棱柱的体积为________.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.