当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点.给出下列命题.①不存在点D,使四面体ABCD有三个面是...
题目
题型:不详难度:来源:
如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点.给出下列命题.
①不存在点D,使四面体ABCD有三个面是直角三角形
②不存在点D,使四面体ABCD是正三棱锥
③存在点D,使CD与AB垂直并且相等
④存在无数个点D,使点O在四面体ABCD的外接球面上
其中真命题的序号是(  )
A.①②B.②③C.③D.③④

答案
∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,
∴AC=BC=


13
,AB=2


2

当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2
此时点D,使四面体ABCD有三个面是直角三角形,故①不正确
使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;
取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;
先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可
∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确
故选D
核心考点
试题【如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点.给出下列命题.①不存在点D,使四面体ABCD有三个面是】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
如图所示:一块矩形的太阳能吸光板安装在三棱锥形状的支撑架上,矩形EFGH的四个顶点分别在边AB、BC、CD、AD上,已知AC=a,BD=b,问E、F、G、H在什么位置时吸光板的吸光量最大?
题型:不详难度:| 查看答案
如图,正三角形ABC的中线AF与中位线DE相交于点G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列四个命题:
①动点A′在平面ABC上的射影在线段AF上;
②恒有平面A′GF⊥平面BCED;
③三棱锥A′-FED的体积有最大值;
④直线A′E与BD不可能垂直.
其中正确的命题的序号是______.
题型:不详难度:| 查看答案
三条线段PA=PB=PC,且点P在△ABC的射影在△ABC的外面,则△ABC是(  )
A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形
题型:不详难度:| 查看答案
若圆锥的侧面积为4π,底面积为2π,则该圆锥的母线长为______.
题型:不详难度:| 查看答案
如图,A是棱长为a的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体,则关于此多面体有以下结论:①有12个顶点;②有24条棱;③有12个面;④表面积为3a2;⑤体积为
5
6
a3.其中正确的结论是______.(要求填上所有正确结论的序号)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.