当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.求证:(1...
题目
题型:不详难度:来源:
如图所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,
∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.
求证:
(1)DE∥平面ABC;
(2)B1F⊥平面AEF.
答案
证明略
解析
  方法一 如图建立空间直角坐标系A—xyz,


令AB=AA1=4,
则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B1(4,0,4).
(1)取AB中点为N,则N(2,0,0),C(0,4,0),D(2,0,2),         3分
=(-2,4,0),=(-2,4,0),
=,                                                  4分
∴DE∥NC,又NC平面ABC,DE平面ABC.
故DE∥平面ABC.                                                  6分
(2)=(-2,2,-4),
=(2,-2,-2),=(2,2,0).
·=(-2)×2+2×(-2)+(-4)×(-2)=0,
,∴B1F⊥EF,                                         10分
·=(-2)×2+2×2+(-4)×0=0.
,即B1F⊥AF,                                          12分
又∵AF∩FE=F,∴B1F⊥平面AEF.                                 14分
方法二 (1)连接A1B、A1E,并延长A1E交AC的延长线于点P,连接BP.由E为C1C的中点且A1C1∥CP,可证A1E=EP.
∵D、E分别是A1B、A1P的中点,
所以DE∥BP.                                   4分
又∵BP平面ABC,
DE平面ABC,
∴DE∥平面ABC.                                    6分
(2)∵△ABC为等腰三角形,F为BC的中点,
∴BC⊥AF,                                        8分
又∵B1B⊥AF,B1B∩BC=B,∴AF⊥平面B1BF,
而B1F平面B1BF,
∴AF⊥B1F.                                    10分
设AB=A1A=a,
则B1F2=a2,EF2=a2
B1E2=a2
∴B1F2+EF2=B1E2,B1F⊥FE.                            12分
又AF∩FE=F,综上知B1F⊥平面AEF.                  14分
核心考点
试题【如图所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.求证:(1】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
、如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折成一个无盖的正六棱柱容器,当容器底边长为        时,容积最大。
题型:不详难度:| 查看答案
定线段AB所在的直线与定平面相交,P为直线AB外的一点,且P不在内,若直线AP、BP与分别交于C、D点,求证:不论P在什么位置,直线CD必过一定点.
题型:不详难度:| 查看答案
如图所示,在正方体ABCD-A1B1C1D1中,E、F分别为CC1、AA1的中点,画出平面BED1F 与平面ABCD的交线.
题型:不详难度:| 查看答案
如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.

(1)求证:MN⊥AB,MN⊥CD;
(2)求MN的长;
(3)求异面直线AN与CM所成角的余弦值.
题型:不详难度:| 查看答案
三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1
∠BAC=90°,A1A⊥平面ABC,A1A=,AB=,AC=2,A1C1=1,=.
(1)证明:平面A1AD⊥平面BCC1B1
(2)求二面角A—CC1—B的余弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.