当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上方,分别以△与△为底面安装上相同的正棱锥P-AB...
题目
题型:不详难度:来源:
如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上方,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.
(Ⅰ)求证:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求点P到平面QBD的距离.
答案
(1)证明见解析(2) (3)
解析
(Ⅰ)由P-ABD,Q-CBD是相同正三棱锥,可知△PBD与△QBD是全等等腰三角形 …1分
取BD中点E,连结PE、QE,则BD⊥PE,BD⊥QE.故BD⊥平面PQE,从而BD⊥PQ.  ………4分
(Ⅱ)由(1)知∠PEQ是二面角P-BD-Q的平面角                    ……………………5分
作PM⊥平面,垂足为M,作QN⊥平面,垂足为N,则PM∥QN,M、N分别是正△ABD与正△BCD的中心,从而点A、M、E、N、C共线,PM与QN确定平面PACQ,且PMNQ为矩形. ……可得ME=NE=,PE=QE=,PQ=MN=…7分∴cos∠PEQ=  ………9分
(Ⅲ)由(1)知BD⊥平面PEQ.设点P到平面QBD的距离为h,则
 ∴
∴ .  ∴ .                             …………………………14分
核心考点
试题【如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上方,分别以△与△为底面安装上相同的正棱锥P-AB】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
已知四棱锥(如图)底面是边长为2的正方形.侧棱底面分别为的中点,
(Ⅰ)求证:平面⊥平面
(Ⅱ)直线与平面所成角的正弦值为,求PA的长;
(Ⅲ)在条件(Ⅱ)下,求二面角的余弦值。
题型:不详难度:| 查看答案
如图,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC.
(Ⅰ)求证:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—B的平面角的正切值;
(Ⅲ)设过直线AD且与BC平行的平面为,求点B到平面的距离。
题型:不详难度:| 查看答案
如图,已知正三棱柱中,,,点分别在棱上,且
(Ⅰ)求平面与平面所成锐二面角的大小;
(Ⅱ)求点到平面的距离.
题型:不详难度:| 查看答案
已知某几何体的三视图如下图所示,其中左视图是边长为2的正三角形,主视图是矩形且,俯视图中分别是所在边的中点,设的中点.
(1)求其体积;(2)求证:;
(3)边上是否存在点,使?若不存在,说明理由;若存在,请证明你的结论.
题型:不详难度:| 查看答案
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,
的中点.侧视图是直角梯形,俯视图是等腰直角
三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积;
(Ⅱ)求证:EM∥平面ABC
(Ⅲ) 试问在棱DC上是否存在点N,使NM⊥平面?若存在,确定点N的位置;
若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.