当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 如图,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC.(Ⅰ)求证:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—...
题目
题型:不详难度:来源:
如图,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC.
(Ⅰ)求证:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—B的平面角的正切值;
(Ⅲ)设过直线AD且与BC平行的平面为,求点B到平面的距离。
答案
(1)证明见解析(2) 2(3)
解析
(Ⅰ)证明  ∵平面ACB⊥平面BCD,∠CBD=900
∴DB⊥平面ACB, ∴DB⊥CA.又∠CAB=900,∴CA⊥平面ADB
∴平面ACB⊥平面BCD. ——————————4分
(Ⅱ)解 设BC的中点为E,作EF⊥CD,垂足为F,连结AF。

∵AC=AB,∴AE⊥BC,∵平面ACB⊥平面BCD, ∴AE⊥平面BCD,
∴FE是AF在平面BCD内的射影,
∴AF⊥CD,
即∠AFE就是二面角A—CD—B的平面角。                       ———————6分
在等腰直角△ABC中,斜边BC="6," ∴AE=3,且CE=3,
在Rt△CEF中,∠ECF=300, ∴EF=,
∴tan∠AFE=,即二面角A—CD—B的平面角的正切值是2. ———————8分
(Ⅲ)解 如图,设DC的中点为G,分别以直线EG.EB.EA为x.y.z轴,建立空间直角坐标系E—xyz.

∴A(0,0,3),B(0,3,0),D(,3,0)
,
设过AD和BC平行的平面的一个法向量是n=(a,b,c),则有
,即
且3b=0,取得n=
∴点B到的距离d=。    ———————12分
核心考点
试题【如图,平面ACB⊥平面BCD,∠CAB=∠CBD=900, ∠BDC=600,BC=6,AB=AC.(Ⅰ)求证:平面ABD⊥平面ACD;(Ⅱ)求二面角A—CD—】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
如图,已知正三棱柱中,,,点分别在棱上,且
(Ⅰ)求平面与平面所成锐二面角的大小;
(Ⅱ)求点到平面的距离.
题型:不详难度:| 查看答案
已知某几何体的三视图如下图所示,其中左视图是边长为2的正三角形,主视图是矩形且,俯视图中分别是所在边的中点,设的中点.
(1)求其体积;(2)求证:;
(3)边上是否存在点,使?若不存在,说明理由;若存在,请证明你的结论.
题型:不详难度:| 查看答案
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,
的中点.侧视图是直角梯形,俯视图是等腰直角
三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积;
(Ⅱ)求证:EM∥平面ABC
(Ⅲ) 试问在棱DC上是否存在点N,使NM⊥平面?若存在,确定点N的位置;
若不存在,请说明理由.
题型:不详难度:| 查看答案
一个简单多面体的直观图和三视图如图所示,它的主视图和侧视图都是腰长为1的等腰直角三角形,俯视图为正方形,E是PD的中点.
(1)求证:
(2)求证:;             
(3)求三棱锥的体积.
题型:不详难度:| 查看答案
已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)是否不论点E在何位置,都有BD⊥AE?证明你的结论;
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.