当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > 设球的半径是1,、、是球面上三点,已知到、两点的球面距离都是,且二面角的大小是,则从点沿球面经、两点再回到点的最短距离是(  )A.B.C.D....
题目
题型:不详难度:来源:
设球的半径是1,是球面上三点,已知两点的球面距离都是,且二面角的大小是,则从点沿球面经两点再回到点的最短距离是(  )
A.B.
C.D.

答案
选C.
解析
.本题考查球面距离.
核心考点
试题【设球的半径是1,、、是球面上三点,已知到、两点的球面距离都是,且二面角的大小是,则从点沿球面经、两点再回到点的最短距离是(  )A.B.C.D.】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
(本小题满分12分)

如图,在几何体中,四边形为矩形,平面
(1)当时,求证:平面平面
(2)若所成角为45°,求几何体的体积。
题型:不详难度:| 查看答案
如图,二面角D—AB—E的大小为,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
⑴求证AE⊥平面BCE;
⑵求二面角B—AC—E的正弦值;
⑶求点D到平面ACE的距离.

题型:不详难度:| 查看答案
(本小题满分14分)
如图:在四棱锥中,底面ABCD是菱形,平面ABCD,点M,N分别为BC,PA的中点,且
(I)证明:平面AMN;
(II)求三棱锥N的体积;
(III)在线段PD上是否存在一点E,使得平面ACE;若存在,求出PE的长,若不存在,说明理由。
题型:不详难度:| 查看答案
(本题满分12分)
如图,在直三棱柱ABC-A1B1C1中,E是BC的中点。
(1)求异面直线AE与A1C所成的角;
(2)若G为C1C上一点,且EG⊥A1C,试确定点G的位置;



 
  (3)在(2)的条件下,求二面角A1-AG-E的大小 
题型:不详难度:| 查看答案
以一个正方体顶点为顶点的四面体共有(   ).
A.B.
C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.