当前位置:高中试题 > 数学试题 > 空间几何体的结构特征 > (本小题满分14分)如图,正方形的边长为1,正方形所在平面与平面互相垂直,是的中点.(1)求证:平面;(2)求证:;(3)求三棱锥的体积....
题目
题型:不详难度:来源:
(本小题满分14分)
如图,正方形的边长为1,正方形所在平面与平面互相垂直,
的中点.
(1)求证:平面

(2)求证:
(3)求三棱锥的体积.
答案

(1)  略
(2)  略
(3)  
解析

(3)解:依题意: 点G到平面ABCD的距离等于点F到平面ABCD的一半,    …………………11分
即: .                                                    …………………12分
.                                   …………………14分
(求底面积对的有1分)
核心考点
试题【(本小题满分14分)如图,正方形的边长为1,正方形所在平面与平面互相垂直,是的中点.(1)求证:平面;(2)求证:;(3)求三棱锥的体积.】;主要考察你对空间几何体的结构特征等知识点的理解。[详细]
举一反三
(满分15分)本题有2小题,第1小题6分,第2小题9分.
如图,在直角梯形中,.将(及其内部)绕所在的直线旋转一周,形成一个几何体.
(1)求该几何体的体积
(2)设直角梯形绕底边所在的直线旋转角)至,问:是否存在,使得.若存在,求角的值,若不存在,请说明理由.

题型:不详难度:| 查看答案
(本题满分12分)
如图,在三棱柱中,侧面均为正方形,∠,点是棱的中点.

(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的余弦值.
题型:不详难度:| 查看答案
(本题满分13分)
各棱长均为2的斜三棱柱ABC—DEF中,已知BF⊥AE,
BF∩CE=O,AB=AE,连结AO。
(I)求证:AO⊥平面FEBC。
(II)求二面角B—AC—E的大小。
(III)求三棱锥B—DEF的体积。
题型:不详难度:| 查看答案
(12分)设圆台的高为3,其轴截面(过圆台轴的截面)如图
所示,母线A1A底面圆的直径AB的夹角为,在轴截面中
A1BA1A,求圆台的体积V.

题型:不详难度:| 查看答案
如图,四棱锥的底面为一直角梯形,其中底面的中点.
(1)求证://平面
(2)若平面
①求异面直线所成角的余弦值;
②求二面角的余弦值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.